Advertisement

Theoretical and Applied Genetics

, Volume 126, Issue 2, pp 415–423 | Cite as

Molecular mapping of vernalization requirement and fertility restoration genes in carrot

  • María S. Alessandro
  • Claudio R. GalmariniEmail author
  • Massimo Iorizzo
  • Philipp W. Simon
Original Paper

Abstract

Carrot (Daucus carota L.) is a cool-season vegetable normally classified as a biennial species, requiring vernalization to induce flowering. Nevertheless, some cultivars adapted to warmer climates require less vernalization and can be classified as annual. Most modern carrot cultivars are hybrids which rely upon cytoplasmic male-sterility for commercial production. One major gene controlling floral initiation and several genes restoring male fertility have been reported but none have been mapped. The objective of the present work was to develop the first linkage map of carrot locating the genomic regions that control vernalization response and fertility restoration. Using an F2 progeny, derived from the intercross between the annual cultivar ‘Criolla INTA’ and a petaloid male sterile biennial carrot evaluated over 2 years, both early flowering habit, which we name Vrn1, and restoration of petaloid cytoplasmic male sterility, which we name Rf1, were found to be dominant traits conditioned by single genes. On a map of 355 markers covering all 9 chromosomes with a total map length of 669 cM and an average marker-to-marker distance of 1.88 cM, Vrn1 mapped to chromosome 2 with flanking markers at 0.70 and 0.46 cM, and Rf1 mapped to chromosome 9 with flanking markers at 4.38 and 1.12 cM. These are the first two reproductive traits mapped in the carrot genome, and their map location and flanking markers provide valuable tools for studying traits important for carrot domestication and reproductive biology, as well as facilitating carrot breeding.

Keywords

Linkage Group Cytoplasmic Male Sterility AFLP Marker Fertility Restoration Vernalization Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge Dr. Aamir Ali (Department of Biological Sciences, University of Sargodha, Sargodha, Pakistan) for valuable assistance on experiments concerning marker evaluations.

Supplementary material

122_2012_1989_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. Alessandro MS (2011) Estudio genético y molecular de la respuesta a la vernalización en zanahoria (Daucus carota L.). Ph.D. thesis, PROBIOL, Universidad Nacional de Cuyo, ArgentinaGoogle Scholar
  2. Alessandro MS, Galmarini CR (2007) Inheritance of vernalization requirement in carrot. J Am Soc Hort Sci 132:525–529Google Scholar
  3. Atherton JG, Craigon J, Basher EA (1990) Flowering and bolting in carrot. I. Juvenility, cardinal temperatures and thermal times for vernalization. J Hort Sci 65:423–429Google Scholar
  4. Bach IC, Olesen A, Simon PW (2002) PCR-based markers to differentiate the mitochondrial genomes of petaloid and male fertile carrot (Daucus carota L.). Euphytica 127:353–365CrossRefGoogle Scholar
  5. Boiteux LS (2000) Characterization of the Meloidogyne javanica resistance locus employing molecular markers and isolation of candidate disease resistance loci in the carrot (Daucus carota L.) genome. Ph.D. thesis, The University of Wisconsin, MadisonGoogle Scholar
  6. Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446CrossRefGoogle Scholar
  7. Bradeen JM, Simon PW (1998) Conversion of an AFLP fragment linked to the carrot Y 2 locus to a simple, codominant PCR-based marker. Theor Appl Genet 97:960–967CrossRefGoogle Scholar
  8. Bradeen JM, Simon PW (2007) Carrot. In: Genome mapping and molecular breeding in plants. In: Kole C (ed), vol 5, Vegetables, Chapter 4. Springer, BerlinGoogle Scholar
  9. Bradeen JM, Naess SK, Song J, Haberlach GT, Wielgus SM, Buell CR, Jiang J, Helgeson JP (2003) Concomitant reiterative BAC walking and fine genetic mapping enable physical map development for the broad-spectrum late blight resistance region, RB. Mol Gen Genomics 269:603–611CrossRefGoogle Scholar
  10. Briard M, Le Clerc V, Grzebelus D, Senalik D, Simon PW (2000) Modified protocols for rapid carrot genomic DNA extraction and AFLP analysis using silver stain or radioisotopes. Plant Mol Biol Report 18:235–241CrossRefGoogle Scholar
  11. Carlsson J, Glimelius K (2011) Cytoplasmic male-sterility and nuclear encoded fertility restoration. In: Kempken F (ed) Plant mitochondria. Springer, New York, pp 469–491Google Scholar
  12. Cavagnaro PF, Chung S, Szklarczyk M, Grzebelus D, Senalik D, Atkins AE, Simon PW (2009) Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 281:273–288Google Scholar
  13. Cavagnaro PF, Chung S-M, Manin S, Yildiz M, Ali A, Alessandro MS, Iorizzo M, Senalik DA, Simon PW (2011) Microsatellite isolation and marker development in carrot—genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BCM Genomics 12:386CrossRefGoogle Scholar
  14. Chahal A, Sidhu HS, Wolyn DJ (1998) A fertile revertant from petaloid cytoplasmic male-sterile carrot has a rearranged mitochondrial genome. Theor Appl Genet 97:450–455CrossRefGoogle Scholar
  15. Dias Tagliacozzo GM, Valio IFM (1994) Effect of vernalization on flowering of Daucus carota (Cvs Nantes and Brasilia). Revista Brasileira de Fisiologia Vegetal. 6:71–73Google Scholar
  16. Eckardt NA (2006) Cytoplasmic male sterility and fertility restoration. Plant Cell 18:515–517CrossRefGoogle Scholar
  17. Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732CrossRefGoogle Scholar
  18. Galmarini CR, Della Gaspera P (1996) Determinación de requerimientos de pre-vernalización en zanahorias (Daucus carota L.) anuales. Actas de la XXI Reunión Argentina de Fisiología Vegetal, Mendoza, p 82Google Scholar
  19. Hansche PE, Gabelman WH (1963) Digenic control of male sterility in carrots, Daucus carota L. Crop Sci 3:383–386CrossRefGoogle Scholar
  20. Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12:389PubMedCrossRefGoogle Scholar
  21. Iovene M, Cavagnaro PF, Senalik D, Buell CR, Jiang J, Simon PW (2011) Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Res 19(4):493–506PubMedCrossRefGoogle Scholar
  22. Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704PubMedCrossRefGoogle Scholar
  23. Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102:425–430CrossRefGoogle Scholar
  24. Lan TH, Paterson AH (2000) Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleraceae. Genetics 155:1927–1954PubMedGoogle Scholar
  25. Linke B, Nothnagel T, Borner T (2003) Flower development in carrot CMS plants: mitochondria affect the expression of MADS-box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37PubMedCrossRefGoogle Scholar
  26. Martinez-Castilla LP, Alvarez-Buylla ER (2003) Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci USA 100:13407–13412PubMedCrossRefGoogle Scholar
  27. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956PubMedGoogle Scholar
  28. Morelock TE (1974) Influence of cytoplasmic source on expression of male sterility in carrot (Daucus carota L.). Ph.D. thesis, The University of Wisconsin, MadisonGoogle Scholar
  29. Morelock TE, Simon PW, Peterson CE (1996) Wisconsin wild: another petaloid male-sterile cytoplasm for carrot. HortScience 31:887–888Google Scholar
  30. Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129PubMedGoogle Scholar
  31. Reeves PA, He Y, Schmitz RJ, Amasino RM, Panella LW, Richards CM (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet. Genetics 176:295–307Google Scholar
  32. Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable umbelliferae. Crop production science in horticultural series: 10. CABI Publishers, New YorkGoogle Scholar
  33. Santos CAF, Simon PW (2002) Some AFLP amplicons are highly conserved DNA sequences mapping to the same linkage groups in two F2 populations of carrot. Genet Mol Biol 25(2):195–201Google Scholar
  34. Santos CAF, Simon PW (2004) Merging carrot linkage groups based on conserved dominant AFLP markers in F2 populations. J Am Soc Hort Sci 129:211–217Google Scholar
  35. Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180CrossRefGoogle Scholar
  36. Schuelke M (2000) An economic method for fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  37. Schulz B, Westphal L, Wricke G (1993) Linkage groups of isozymes, RFLP and RAPD markers in carrot (Daucus carota L. sativus). Euphytica 74:67–76CrossRefGoogle Scholar
  38. Simon PW, Freeman RE, Vieira JV, Boiteux LS, Briard M, Nothnagel T, Michalik B, Young-Seok Kwon (2008) Carrot. In: Prohens J, Nuez F (eds) Handbook of Plant Breeding, vol 2, Vegetables II: Fabaceae, Liliaceae, Solanaceae and Umbelliferae. Springer, Heidelberg, pp 327–357Google Scholar
  39. Thompson DJ (1961) Studies on the inheritance of male sterility in the carrot (Daucus carota L. var. sativa). Proc Am Soc Hort Sci 78:332–338Google Scholar
  40. Van Ooijen JW, Voorrips RE (2001) JoinMap® Version 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  41. Vivek BS, Simon PW (1999) Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor Appl Genet 99:58–64CrossRefGoogle Scholar
  42. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78PubMedCrossRefGoogle Scholar
  43. Vos P, Hogers R, Bleeker M (1995) AFLP a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  44. Welch JE, Grimball EL (1947) Male sterility in carrot. Science 106:594PubMedCrossRefGoogle Scholar
  45. Westphal L, Wricke G (1997) Construction of a linkage map of Daucus carota L. sativus and its application for the mapping of disease resistance and restorer genes. J Appl Genet 38A:13–19Google Scholar
  46. Wolyn DJ, Chahal A (1998) Nuclear and cytoplasmic interactions for petaloid male-sterile accessions of wild carrot (Daucus carota L.). J Am Soc Hort Sci 123(5):849–853Google Scholar
  47. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, San Miguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:640–1644Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • María S. Alessandro
    • 1
  • Claudio R. Galmarini
    • 1
    • 2
    Email author
  • Massimo Iorizzo
    • 3
  • Philipp W. Simon
    • 4
  1. 1.Estación Experimental Agropecuaria La ConsultaInstituto Nacional de Tecnología Agropecuaria (INTA)MendozaArgentina
  2. 2.Facultad de Ciencias Agrarias, CONICETUniversidad Nacional de CuyoMendozaArgentina
  3. 3.Department of HorticultureUniversity of WisconsinMadisonUSA
  4. 4.USDA-Agricultural Research Service, Vegetable Crops Research Unit, Department of HorticultureUniversity of WisconsinMadisonUSA

Personalised recommendations