Theoretical and Applied Genetics

, Volume 126, Issue 2, pp 401–414 | Cite as

Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.)

  • Thierry LacombeEmail author
  • Jean-Michel Boursiquot
  • Valérie Laucou
  • Manuel Di Vecchi-Staraz
  • Jean-Pierre Péros
  • Patrice This
Original Paper


Inheritance of nuclear microsatellite markers (nSSR) has been proved to be a powerful tool to verify or uncover the parentage of grapevine cultivars. The aim of the present study was to undertake an extended parentage analysis using a large sample of Vitis vinifera cultivars held in the INRA “Domaine de Vassal” Grape Germplasm Repository (France). A dataset of 2,344 unique genotypes (i.e. cultivars without synonyms, clones or mutants) identified using 20 nSSR was analysed with FAMOZ software. Parentages showing a logarithm of odds score higher than 18 were validated in relation to the historical data available. The analysis first revealed the full parentage of 828 cultivars resulting in: (1) 315 original full parentages uncovered for traditional cultivars, (2) 100 full parentages confirming results established with molecular markers in prior papers and 32 full parentages that invalidated prior results, (3) 255 full parentages confirming pedigrees as disclosed by the breeders and (4) 126 full parentages that invalidated breeders’ data. Second, incomplete parentages were determined in 1,087 cultivars due to the absence of complementary parents in our cultivar sample. Last, a group of 276 genotypes showed no direct relationship with any other cultivar in the collection. Compiling these results from the largest set of parentage data published so far both enlarges and clarifies our knowledge of the genetic constitution of cultivated V. vinifera germplasm. It also allows the identification of the main genitors involved in varietal assortment evolution and grapevine breeding.


Genetic Erosion Table Grape Full Parentage Grape Cultivar Single Nucleotide Polymorphism Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Ph. Chatelet for his help in writing the manuscript, A. Doligez for comments on drafts, S. Nicolas for discussion, V. Maillol and G. Sarah for Python-scripts and all the team of INRA Grape Repository at “Domaine de Vassal” for maintaining the collection. We also thank the anonymous reviewers for helpful comments.

Supplementary material

122_2012_1988_MOESM1_ESM.pdf (350 kb)
Supplementary material 1 (PDF 349 kb)
122_2012_1988_MOESM2_ESM.pdf (694 kb)
Supplementary material 2 (PDF 694 kb)
122_2012_1988_MOESM3_ESM.pdf (929 kb)
Supplementary material 3 (PDF 928 kb)
122_2012_1988_MOESM4_ESM.pdf (557 kb)
Supplementary material 4 (PDF 557 kb)
122_2012_1988_MOESM5_ESM.pdf (927 kb)
Supplementary material 5 (PDF 927 kb)
122_2012_1988_MOESM6_ESM.pdf (1.2 mb)
Supplementary material 6 (PDF 1277 kb)
122_2012_1988_MOESM7_ESM.pdf (123 kb)
Supplementary material 7 (PDF 123 kb)


  1. Aguero CB, Rodriguez JG, Martinez LE, Dangl GS, Meredith CP (2003) Identity and parentage of Torrontes cultivars in Argentina. Am J Enol Vitic 54(4):318–321Google Scholar
  2. Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75(5):669–673CrossRefGoogle Scholar
  3. Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape Vitis vinifera L. Genet Res 81(3):179–192. doi: 10.1017/s0016672303006177 PubMedCrossRefGoogle Scholar
  4. Arroyo-Garcia R, Ruiz-Garcia L, Bolling L, Ocete R, Lopez MA, Arnold C, Ergul A, Soylemezoglu G, Uzun HI, Cabello F, Ibanez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Goris-Lavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15(12):3707–3714PubMedCrossRefGoogle Scholar
  5. Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci 29(3):148–161. doi: 10.1080/07352689.2010.481167 CrossRefGoogle Scholar
  6. Barnaud A, Laucou V, This P, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine Vitis vinifera L. subsp. silvestris. Heredity 104(5):431–437. doi: 10.1038/hdy.2009.143 PubMedCrossRefGoogle Scholar
  7. Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18(10):503–511CrossRefGoogle Scholar
  8. Bouquet A, Truel P, Wagner R (1981) Recurrent selection in grapevine breeding. Agronomie 1:65–73. doi: 10.1051/agro:19810109 CrossRefGoogle Scholar
  9. Boursiquot JM, Lacombe T, Laucou V, Julliard S, Perrin FX, Lanier N, Legrand D, Meredith C, This P (2009) Parentage of Merlot and related winegrape cultivars of southwestern France: discovery of the missing link. Aust J Grape Wine Res 15(2):144–155CrossRefGoogle Scholar
  10. Bowers J, Boursiquot JM, This P, Chu K, Johansson H, Meredith C (1999) Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science 285(5433):1562–1565PubMedCrossRefGoogle Scholar
  11. Cabezas JA, Cervera MT, Arroyo-Garcia R, Ibanez J, Rodriguez-Torres I, Borrego J, Cabello F, Martinez-Zapater JM (2003) Garnacha and Garnacha Tintorera: genetic relationships and the origin of teinturier varieties cultivated in Spain. Am J Enol Vitic 54(4):237–245Google Scholar
  12. Cabezas JA, Ibanez J, Lijavetzky D, Velez D, Bravo G, Rodriguez V, Carreno I, Jermakow AM, Carreno J, Ruiz-Garcia L, Thomas MR, Martinez-Zapater JM (2011) A 48 SNP set for grapevine cultivar identification. BMC Plant Biol 11:153PubMedCrossRefGoogle Scholar
  13. Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121(8):1569–1585. doi: 10.1007/s00122-010-1411-9 PubMedCrossRefGoogle Scholar
  14. Crespan M, Milani N (2001) The Muscats: a molecular analysis of synonyms, homonyms and genetic relationships within a large family of grapevine cultivars. Vitis 40(4):204–208Google Scholar
  15. Csajrdi G, Nepusz T (2009) The Igraph library. MTA RMKI. Accessed Jan 2012
  16. Dettweiler E, Jung A, Zyprian E, Topfer R (2000) Grapevine cultivar Müller-Thurgau and its true to type descent. Vitis 39(2):63–65Google Scholar
  17. Di Gaspero G, Copetti D, Coleman C, Castellarin SD, Eibach R, Kozma P, Lacombe T, Gambetta G, Zvyagin A, Cindrić P, Kovács L, Morgante M, Testolin R (2012) Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet 124(2):277–286. doi: 10.1007/s00122-011-1703-8 PubMedCrossRefGoogle Scholar
  18. Di Vecchi-Staraz M, Boselli M, Laucou V, Lacombe T, This P, Gerber S, Vares D Famoz (2005) A software for large scale parentage analysis in Vitis vinifera L. species. In: ISHS (ed) Proceedings of the International Workshop on Advances in Grapevine and Wine Research. Acta Hort, Venosa, p 79–83Google Scholar
  19. Di Vecchi-Staraz M, Bandinelli R, Boselli M, This P, Boursiquot JM, Laucou V, Lacombe T, Vares D (2007) Genetic structuring and parentage analysis for evolutionary studies in grapevine: kin group and origin of the cultivar Sangiovese revealed. J Am Soc Hortic Sci 132(4):514–524Google Scholar
  20. El Oualkadi A, Ater M, Messaoudi Z, El Heit K, Laucou V, Boursiquot JM, Lacombe T, This P (2011) Genetic diversity of Moroccan grape accessions conserved ex situ compared to Maghreb and Europe gene pools. Tree Genet Genome 7(6):1287–1298. doi: 10.1007/s11295-011-0413-3 CrossRefGoogle Scholar
  21. Fournier-Level A, Lacombe T, Le Cunff L, Boursiquot JM, This P (2010) Evolution of the VvMybA gene family, the major determinant of berry colour in cultivated grapevine (Vitis vinifera L.). Heredity 104(4):351–362. doi: 10.1038/hdy.2009.148 PubMedCrossRefGoogle Scholar
  22. Galet P (2000) Dictionnaire encylcopédique des cépages. Hachette, ParisGoogle Scholar
  23. Garbe JR, Da Y (2004) Pedigraph 2.0: a software tool for the graphing and analysis of large complex pedigrees. J Dairy Sci 87:242–248Google Scholar
  24. García-Muñoz S, Lacombe T, de Andrés M, Gaforio L, Muñoz-Organero G, Laucou V, This P, Cabello F (2011) Grape varieties (Vitis vinifera L.) from the Balearic Islands: genetic characterization and relationship with Iberian Peninsula and Mediterranean Basin. Genet Res Crop Evol 59(4):589–605. doi: 10.1007/s10722-011-9706-5 Google Scholar
  25. Gerber S, Chabrier P, Kremer A (2003) FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3(3):479–481CrossRefGoogle Scholar
  26. Grando MS, Frisinghelli C (1998) Grape microsatellite markers: sizing of DNA alleles and genotype analysis of some grapevine cultivars. Vitis 37(2):79–82Google Scholar
  27. Huglin P, Schneider C (1998) Biologie et écologie de la vigne, 2nd edn. Lavoisier, ParisGoogle Scholar
  28. Ibanez J, Vargas AM, Palancar M, Borrego J, de Andres MT (2009) Genetic relationships among table-grape varieties. Am J Enol Vitic 60(1):35–42Google Scholar
  29. Ibn Al Awwâm (≈1190) Kitâb al-filâha. English edition: (1864) The book of agriculture (trans: Clément-Mullet JJ). Actes Sud, Arles (2000 edn.)Google Scholar
  30. Jannink JL, Bink M, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6(8):337–342. doi: 10.1016/s1360-1385(01)02017-9 PubMedCrossRefGoogle Scholar
  31. Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Res 10(1):6–30. doi: 10.1111/j.1755-0998.2009.02778.x CrossRefGoogle Scholar
  32. Lacombe T, Boursiquot JM, Laucou V, Dechesne F, Vares D, This P (2007) Relationships and genetic diversity within the accessions related to Malvasia held in the Domaine de Vassal grape germplasm repository. Am J Enol Vitic 58(1):124–131Google Scholar
  33. Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Vares D, Peros JP, Boursiquot JM, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122(6):1233–1245. doi: 10.1007/s00122-010-1527-y PubMedCrossRefGoogle Scholar
  34. Levadoux L (1956) Les populations sauvages et cultivées de Vitis vinifera L. Ann Amélioration Plantes 1:59–118Google Scholar
  35. Lopes MS, Sefc KM, Dias EE, Steinkellner H, Machado MLD, Machado AD (1999) The use of microsatellites for germplasm management in a Portuguese grapevine collection. Theor Appl Genet 99(3–4):733–739PubMedCrossRefGoogle Scholar
  36. Maletic E, Pejic I, Kontic JK, Piljac J, Dangl GS, Vokurka A, Lacombe T, Mirosevic N, Meredith CP (2004) Zinfandel, Dobricic, and Plavac mali: the genetic relationship among three cultivars of the Dalmatian Coast of Croatia. Am J Enol Vitic 55(2):174–180Google Scholar
  37. Maul E, Töpfer R, Eibach R (2012) Vitis International Variety Catalogue. Julius Kühn Institut. Accessed Jan 2012
  38. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J-M, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108(9):3530–3535. doi: 10.1073/pnas.1009363108 PubMedCrossRefGoogle Scholar
  39. Olmo HP (1996) The origin and domestication of the vinifera grape. In: McGovern PE, Fleming SJ, Katz SH (eds) The origins and ancient history of wine. Gordon and Breach, New York, pp 31–43Google Scholar
  40. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  41. Regner F, Stadelhuber A, Eisenheld C (1998a) Heunisch x Fränkisch, an important gene reservoir for European grapevines (Vitis vinifera L. sativa). Vitic Enol Sci 53:114–118Google Scholar
  42. Regner F, Stadlhuber A, Eisenheld C, Kaserer H (1998b) Considerations about the evolution of grapevine and the role of Traminer. In: Bouquet A, Boursiquot JM (eds) Proceedings of the 7th International Symposium on Grapevine Genetics and Breeding. Acta Hort, Montpellier, p 177–181Google Scholar
  43. Sefc KM, Steinkellner H, Wagner HW, Glossl J, Regner F (1997) Application of microsatellite markers to parentage studies in grapevine. Vitis 36(4):179–183Google Scholar
  44. Sefc KM, Steinkellner H, Glossl J, Kampfer S, Regner F (1998) Reconstruction of a grapevine pedigree by microsatellite analysis. Theor Appl Genet 97(1–2):227–231CrossRefGoogle Scholar
  45. Sefc KM, Pejic I, Maletic E, Thomas MR, Lefort F (2009) Microsatellite markers for grapevine: tools for cultivar identification and pedigree reconstruction. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology. 2 edn. Springer, Dordrecht, p 565–596. doi: 10.1007/978-90-481-2305-6
  46. Strefeler MS, Weeden NF, Reisch BI (1992) Inheritance of chloroplast DNA in 2 full-sib Vitis populations. Vitis 31(4):183–187Google Scholar
  47. Tapia AM, Cabezas JA, Cabello F, Lacombe T, Martinez-Zapater JM, Hinrichsen P, Cervera MT (2007) Determining the Spanish origin of representative ancient American grapevine varieties. Am J Enol Vitic 58(2):242–251Google Scholar
  48. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519PubMedCrossRefGoogle Scholar
  49. Thomas MR, Cain P, Scott NS (1994) DNA typing of grapevines, a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol Biol 25(6):939–949. doi: 10.1007/bf00014668 PubMedCrossRefGoogle Scholar
  50. Vouillamoz J, Maigre D, Meredith CP (2003) Microsatellite analysis of ancient alpine grape cultivars: pedigree reconstruction of Vitis vinifera L. Cornalin du Valais. Theor Appl Genet 107(3):448–454PubMedCrossRefGoogle Scholar
  51. Weir BS, Anderson AD, Hepler AB (2006) Genetic relatedness analysis: modern data and new challenges. Nat Rev Genet 7(10):771–780. doi: 10.1038/nrg1960 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thierry Lacombe
    • 1
    Email author
  • Jean-Michel Boursiquot
    • 2
  • Valérie Laucou
    • 1
  • Manuel Di Vecchi-Staraz
    • 1
    • 3
  • Jean-Pierre Péros
    • 1
  • Patrice This
    • 1
  1. 1.UMR AGAP, Equipe Diversité et Adaptation de la Vigne et des Espèces MéditerranéennesINRAMontpellierFrance
  2. 2.UMR AGAP, Equipe Diversité et Adaptation de la Vigne et des Espèces MéditerranéennesMontpellier SupAgroMontpellierFrance
  3. 3.Banyuls-sur-MerFrance

Personalised recommendations