Advertisement

Theoretical and Applied Genetics

, Volume 126, Issue 1, pp 275–287 | Cite as

Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population

  • Jiwen Yu
  • Ke Zhang
  • Shuaiyang Li
  • Shuxun Yu
  • Honghong Zhai
  • Man Wu
  • Xingli Li
  • Shuli Fan
  • Meizhen Song
  • Daigang Yang
  • Yunhai Li
  • Jinfa Zhang
Original Paper

Abstract

Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65–25.27 % of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12 %) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.

Keywords

Fiber Strength Fiber Quality Upland Cotton Lint Yield Yield Trait 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants from the Major State Basic Research Development Program of China (“973” Program) (No. 2010CB126006) and the National High Technology Research and Development Program of China (“863” Program) (No. 2012AA101108); and the New Mexico Agricultural Experiment Station.

References

  1. Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291CrossRefGoogle Scholar
  2. Chee PW, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005a) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763PubMedCrossRefGoogle Scholar
  3. Chee PW, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005b) Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111:772–781Google Scholar
  4. Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang TZ, Guo WZ, Chen XY, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Deynze AV, Zhu YX, Yu SX, Abdurakhmonov I, Katageri I, Kumar PA, Rahman M, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310PubMedCrossRefGoogle Scholar
  5. Chen H, Qian N, Guo W, Song Q, Li B, Deng F, Dong C, Zhang T (2009) Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro. D8 in Upland cotton. Theor Appl Genet 119:605–612PubMedCrossRefGoogle Scholar
  6. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  7. Draye X, Chee PW, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor Appl Genet 111:764–771PubMedCrossRefGoogle Scholar
  8. Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang T (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541PubMedCrossRefGoogle Scholar
  9. Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 272:308–327PubMedCrossRefGoogle Scholar
  10. Han ZG, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang TZ (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112:430–439PubMedCrossRefGoogle Scholar
  11. He D, Lin Z, Zhang X, Nie Y, Guo X, Feng C, Stewart JM (2005) Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica 144:141–149CrossRefGoogle Scholar
  12. He D, Lin Z, Zhang X, Nie Y, Guo X, Zhang Y, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197CrossRefGoogle Scholar
  13. Jiang CX, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424PubMedCrossRefGoogle Scholar
  14. Jiang C, Chee PW, Draye X, Morrell PL, Smith CW, Paterson AH (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploidy Gossypium (cotton). Evolution 54:798–814PubMedGoogle Scholar
  15. Kohel RJ, Yu J, Park Y, Lazo R (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172CrossRefGoogle Scholar
  16. Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626PubMedCrossRefGoogle Scholar
  17. Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci 45:123–140Google Scholar
  18. Lacape JM, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Llewellyn D, Jean J, Thomas E, Viot C (2009) A new interspecific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton. Theor Appl Genet 119:281–292PubMedCrossRefGoogle Scholar
  19. Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palaï O, Georges S, Giband M, de Assunção H, Barroso PA, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10:132PubMedCrossRefGoogle Scholar
  20. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374PubMedCrossRefGoogle Scholar
  21. Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart JM (2005) Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed 124:180–187CrossRefGoogle Scholar
  22. Lin Z, Zhang Y, Zhang X, Guo X (2009) A high-density integrative linkage map for Gossypium. Euphytica 166:35–45CrossRefGoogle Scholar
  23. Matsubara K, Kono I, Hori K, Nonoue Y, Ono N, Shomura A, Mizubayashi T, Yamamoto S, Yamanouchi U, Shirasawa K, Nishio T, Yano M (2008) Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet 117:935–945PubMedCrossRefGoogle Scholar
  24. McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newslett 14:11–13Google Scholar
  25. Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175PubMedCrossRefGoogle Scholar
  26. Park YH, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, El-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics 274:428–441PubMedCrossRefGoogle Scholar
  27. Paterson AH, Saranga Y, Menz M, Jiang C, Wright RJ (2003) QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396PubMedGoogle Scholar
  28. Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JM, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847PubMedGoogle Scholar
  29. Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park CH, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 161:389–417CrossRefGoogle Scholar
  30. Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploid cotton QTLs shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588PubMedCrossRefGoogle Scholar
  31. Shappley ZW, Jenkins JN, Zhu J, McCarty JC (1998) Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci 2:153–163Google Scholar
  32. Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed 15:169–181CrossRefGoogle Scholar
  33. Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica 155:371–380CrossRefGoogle Scholar
  34. Song X, Wang K, Guo W, Zhang J, Zhang T (2005) A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome 48:378–390PubMedCrossRefGoogle Scholar
  35. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  36. Ulloa M, Meredith WR (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4:161–170Google Scholar
  37. Wehrhahn C, Allard RW (1965) The detection and measurement of the effects of individual genes involved in the inheritance of a quantitative character in wheat. Genetics 51:109–119PubMedGoogle Scholar
  38. Wu J, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2009) Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of Upland cotton. Euphytica 165:231–245Google Scholar
  39. Xu YB, Zhu LH, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Genet Genomics 253:535–545CrossRefGoogle Scholar
  40. Yu JW, Yu SX, Liu C, Wu W, Fan SL, Song MZ, Lin ZX, Zhang XL, Zhang JF (2007) High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol 49:716–724CrossRefGoogle Scholar
  41. Yu J, Kohel RJ, Smith CW (2010) The construction of a tetraploid cotton genome wide comprehensive reference map. Genomics 95:230–240PubMedCrossRefGoogle Scholar
  42. Yu Y, Yuan D, Liang S, Li X, Wang X, Lin Z, Zhang X (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12:15PubMedCrossRefGoogle Scholar
  43. Zhang JF, Percy RG (2007) Improving Upland cotton by introducing desirable genes from Pima cotton. World Cotton Res Conf. http://wcrc.confex.com/wcrc/2007/techprogram/P1901.HTM
  44. Zhang JF, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4:193–201Google Scholar
  45. Zhang J, Wu YT, Guo WZ, Zhang TZ (2000) Fast screening of SSR markers in cotton with PAGE/silver staining. Cotton Sci Sinica 12:267–269Google Scholar
  46. Zhang J, Guo W, Zhang T (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174PubMedCrossRefGoogle Scholar
  47. Zhang Y, Lin Z, Xia Q, Zhang M, Zhang X (2008) Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome 51:534–546PubMedCrossRefGoogle Scholar
  48. Zhang Z, Hu M, Zhang J, Liu D, Zheng J, Zhang K, Wang W, Wan Q (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiwen Yu
    • 1
  • Ke Zhang
    • 1
  • Shuaiyang Li
    • 1
  • Shuxun Yu
    • 1
  • Honghong Zhai
    • 1
  • Man Wu
    • 1
  • Xingli Li
    • 1
  • Shuli Fan
    • 1
  • Meizhen Song
    • 1
  • Daigang Yang
    • 1
  • Yunhai Li
    • 1
  • Jinfa Zhang
    • 2
  1. 1.State Key Laboratory of Cotton Biology, Cotton Research InstituteChinese Academy of Agricultural ScienceAnyangChina
  2. 2.Department of Plant and Environmental SciencesNew Mexico State UniversityLas CrucesUSA

Personalised recommendations