Theoretical and Applied Genetics

, Volume 125, Issue 6, pp 1087–1096 | Cite as

Hybrid breeding in autogamous cereals

  • Carl Friedrich Horst LonginEmail author
  • Jonathan Mühleisen
  • Hans Peter Maurer
  • Hongliang Zhang
  • Manje Gowda
  • Jochen Christoph Reif


Hybrid breeding in autogamous cereals has a long history of attempts with moderate success. There is a vast amount of literature investigating the potential problems and solutions, but until now, market share of hybrids is still a niche compared to line varieties. Our aim was to summarize the status quo of hybrid breeding efforts for the autogamous cereals wheat, rice, barley, and triticale. Furthermore, the research needs for a successful hybrid breeding in autogamous cereals are intensively discussed. To our opinion, the basic requirements for a successful hybrid breeding in autogamous cereals are fulfilled. Nevertheless, optimization of the existing hybridization systems is urgently required and should be coupled with the development of clear male and female pool concepts. We present a quantitative genetic framework as a first step to compare selection gain of hybrid versus line breeding. The lack of precise empirical estimates of relevant quantitative genetic parameters, however, is currently the major bottleneck for a robust evaluation of the potential of hybrid breeding in autogamous cereals.


Cytoplasmic Male Sterility Line Breeding Heterotic Group Selection Gain Hybrid Breeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M. Gowda was supported by BMBF within the HYWHEAT project (Grant ID FKZ0315945D). J. Mühleisen was supported by BMELV/BLE within the „Züchtung von Triticalesorten für extreme Umwelten – eine Frage des Sortentyps?“project (Grant ID 2814502410). H. L. Zhang was supported by NSFC (Grant ID 31171613) and the National Basic Research Program of China (Grant ID 2010CB125904). Furthermore, we thank Dr. Karim Ammar, CIMMYT, Dr. Erhard Ebmeyer, KWS Lochow GmbH, Prof. Hartwig H. Geiger, University of Hohenheim, Dr. Ibrahim Kazman, Lantmännen SW Seed Hadmersleben GmbH, Dr. Volker Lein, Saaten Union Recherche, Dr. Ralf Schachschneider, Nordsaat Saatzuchtgesellschaft mbH, Dr. Johannes Schacht, Limagrain GmbH, Dr. Gunther Stiewe, Syngenta, Dr. Sigrid Weissmann and Dr. Elmar Weissmann, Saatzucht Dr. Hege GbR and Dr. F. Xie, IRRI for their valuable suggestions to improve the manuscript. We thank the two anonymous reviewers for their suggestions in improving the manuscript.

Supplementary material

122_2012_1967_MOESM1_ESM.doc (116 kb)
Supplementary material 1 (DOC 115 kb)


  1. Abel S, Mollers C, Becker HC (2005) Development of synthetic Brassica napus lines for the analysis of “fixed heterosis” in allopolyploid plants. Euphytica 146:157–163CrossRefGoogle Scholar
  2. Ahokas H (1979) Cytoplasmic male sterility in barley. Acta Agric Scand 29:219–224CrossRefGoogle Scholar
  3. Barbosa-Neto JF, Sorrels ME, Cisar G (1996) Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome 39:1142–1149PubMedCrossRefGoogle Scholar
  4. Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, WoodburyGoogle Scholar
  5. Borghi B, Perenzin M (1994) Diallel analysis to predict heterosis and combining ability for grain yield, yield components and bread-making quality in bread wheat (T. aestivum). Theor Appl Genet 89:975–981CrossRefGoogle Scholar
  6. Bruns R, Peterson CJ (1998) Yield and stability factors associated with hybrid wheat. Euphytica 100:1–5Google Scholar
  7. Cochran WG (1951) Improvement by means of selection. In: Proceedings 2nd Berkeley Symposium Math Stat Prob, pp 449–470Google Scholar
  8. Cockerham CC (1954) An extension of the concept of partitioning hereditary variance for analysis of covariance’s among relatives when epistasis is present. Genetics 39:859–882PubMedGoogle Scholar
  9. Coors JG, Pandey S (1999) The genetics and exploitation of heterosis in crops. ASA, CSSA, and SSSA, MadisonGoogle Scholar
  10. Corbellini M, Perenzin M, Accerbi M, Vaccino P, Borghi B (2002) Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica 123:273–285CrossRefGoogle Scholar
  11. D’Souza VL (1970) Investigations concerning the suitability of wheat as a pollen-donor for cross pollination by wind as compared to rye, Triticale and Secalotricum. Zeitschrift für Pflanzenzüchtung 63:246–269Google Scholar
  12. Dhillon BS, Singh J (1977) Combining ability and heterosis in diallel crosses of maize. Theor Appl Genet 49:117–122CrossRefGoogle Scholar
  13. Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. In: Janick J (ed) Plant breeding reviews, long term selection: crops, animals, and bacteria, part 2, vol 24. Wiley, New York, pp 109–151Google Scholar
  14. Edwards IB (2001) Origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book—a history of wheat breeding, vol 1. Lavoisier publishing, Paris, pp 1019–1045Google Scholar
  15. Falconer DS, Mackay TF (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, HarlowGoogle Scholar
  16. Fischer S, Möhring J, Schön CC, Piepho H-P, Klein D, Schipprack W, Utz HF, Melchinger AE, Reif JC (2008) Trends in genetic variance components during 30 years of hybrid maize breeding at the University of Hohenheim. Plant Breeding 127:446–451CrossRefGoogle Scholar
  17. Fischer S, Maurer HP, Würschum T, Möhring J, Piepho H-P, Schön CC, Thiemt E-M, Dhillon BS, Weissmann EA, Melchinger AE, Reif JC (2010) Development of heterotic groups in triticale. Crop Sci 50:584–590CrossRefGoogle Scholar
  18. Garcia AAF, Wang S, Melchinger AE, Zeng Z-B (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180:1707–1724PubMedCrossRefGoogle Scholar
  19. Geiger HH, Miedaner T (2009) Rye breeding. In: Carena MJ (ed) Cereals (Handbook of Plant Breeding). vol 3. Springer, New York, pp 157–181Google Scholar
  20. Gordillo AG, Geiger HH (2008) Alternative recurrent selection strategies using doubled haploid lines in hybrid maize breeding. Crop Sci 48:911–922CrossRefGoogle Scholar
  21. Gowda M, Kling CK, Würschum T, Liu W, Maurer HP, Hahn V, Reif JC (2010) Hybrid breeding in durum wheat: heterosis and combining ability. Crop Sci 50:2224–2230CrossRefGoogle Scholar
  22. Gowda M, Longin CFH, Lein V, Reif JC (2012a) Relevance of specific versus general combining ability effects in wheat. Crop Sci (In press)Google Scholar
  23. Gowda M, Zhao Y, Maurer HP, Weissmann EA, Würschum T, Reif JC (2012b) Best linear unbiased prediction of triticale hybrid performance. Euphytica (in review)Google Scholar
  24. Hallauer AR, Russell WA, Lamkey KR (1988) Corn breeding. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. Agron Monogr 18 ASA, CSSA, SSSA, Madison, pp 469–565Google Scholar
  25. Hammer K (1977) Fragen zur Eignung des Pollens der Kulturgerste (Hordeum vulgare L. s.l.) für die Windbestäubung. Kulturpflanze 25:13–23 (in German)CrossRefGoogle Scholar
  26. He X-H, Zhang Y-M (2011) A complete solution for dissecting pure main and epistatic effects of QTL in triple testcross design. PLoS ONE 6:e24575PubMedCrossRefGoogle Scholar
  27. Herrmann M (2007) A diallel analysis of various traits in winter triticale. Plant Breed 126:19–23CrossRefGoogle Scholar
  28. Ikehashi H (1991) Genetics of hybrid sterility in wide hybridization in rice. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 113–127Google Scholar
  29. Ikehashi H, Araki H (1984) Varietal screening for compatibility types revealed in F1 fertility of distant crosses in rice. Jpn J Breed 34:304–312Google Scholar
  30. Jones JW (1926) Hybrid vigor in rice. J Am Soc Agron 18:423–428CrossRefGoogle Scholar
  31. Jordaan JP (1996) Hybrid wheat: advances and challenges. In: Reynolds MP et al (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 66–75Google Scholar
  32. Kempe K, Gils M (2011) Pollination control technologies for hybrid breeding. Mol Breed 27:417–437CrossRefGoogle Scholar
  33. Keydel F (1972) Blütenbiologische Untersuchungen. 1. Offenblütigkeit verschiedener Winterweizensorten. Bayer Landw Jb 49:688–701 (in German)Google Scholar
  34. Keydel F (1977) Offenblütigkeit und Fremdbefruchtung bei selbstbefruchtenden Getreidenarten am Beispiel Winterweizen. Bericht über die Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein S. 22–24 (in German)Google Scholar
  35. Keydel F (1985) Die Entwicklung von Hybridsorten bei Weizen mit Hilfe von Gametoziden. 1. Erfahrungen. In: Bericht über die Arbeitstagung 1985 der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein S. 13–23 (in German)Google Scholar
  36. Koekemoer FP, van Eeden E, Bonjean AP (2011) An overview of hybrid wheat production in South Africa and review of current worldwide wheat hybrid developments. In: Bonjean AP, Angus WJ (eds) The world wheat book—a history of wheat breeding, vol 2. Lavoisier publishing, Paris, pp 907–950Google Scholar
  37. Koemel JE Jr, Guenzi AC, Carver BF, Payton ME, Morgan GH, Smith EL (2004) Hybrid and pure line hard winter wheat yield and stability. Crop Sci 44:107–113CrossRefGoogle Scholar
  38. Kusterer B, Piepho H-P, Utz HF, Schön CC, Muminovic J, Meyer RC, Altmann T, Melchinger AE (2007) Heterosis for biomass-related traits in Arabidopsis investigated by a novel QTL analysis of the triple test cross design with recombinant inbred lines. Genetics 177:1839–1850PubMedCrossRefGoogle Scholar
  39. Li SQ, Yang DC, Zhu YG (2007) Characterization and use of male sterility in rice breeding. J Integr Plant Biol 49:791–804CrossRefGoogle Scholar
  40. Longin CFH, Utz HF, Melchinger AE, Reif JC (2007) Hybrid maize breeding with doubled haploids. II. Optimum type and number of testers in two-stage selection for general combining ability. Theor Appl Genet 114:393–402PubMedCrossRefGoogle Scholar
  41. Lu Z-M, Xu B-Q (2010) On significance of heterotic group theory in hybrid rice breeding. Rice Sci 17:94–98CrossRefGoogle Scholar
  42. Martin AC, Atienza SG, Ramirez MC, Barro F, Martin A (2009) Chromosome engineering in wheat to restore male fertility in the msH1 CMS system. Mol Breed 24:397–408CrossRefGoogle Scholar
  43. Maruyama K, Kato H, Araki H (1991) Mechanized production of F1 seeds in rice [Oryza sativa] by mixed planting. JARQ 24:243–252Google Scholar
  44. Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. ASA-CSSA-SSSA Publication, Madison, pp 29–44Google Scholar
  45. Melchinger AE, Piepho HP, Utz HF, Muminović J, Wegenast T, Törjék O, Altmann T, Kusterer B, Zeng ZB, Schön CC (2007a) Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177:1827–1837PubMedCrossRefGoogle Scholar
  46. Melchinger AE, Utz HF, Piepho HP, Zeng ZB, Schön CC (2007b) The role of epistasis in the manifestation of heterosis—a systems-oriented approach. Genetics 177:1815–1825PubMedCrossRefGoogle Scholar
  47. Melchinger AE, Utz HF, Schon CC (2008) Genetic expectations of quantitative trait loci main and interaction effects obtained with the triple testcross design and their relevance for the analysis of heterosis. Genetics 178:2265–2274PubMedCrossRefGoogle Scholar
  48. Merfert W, Faustmann M, Täubert K (1987) Höhe und Verbreitung von Hybrideffekten bei Weizen. Arch. Züchtungsforsch 17:63–72 (in German)Google Scholar
  49. Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetics studies. Trends Plant Sci 12:433–436PubMedCrossRefGoogle Scholar
  50. Mühleisen J, Maurer HP, Stiewe G, Bury P, Reif JC (2012) Hybrid breeding in barley. Crop Science In reviewGoogle Scholar
  51. Nalepa S (1990) Hybrid triticale: present and future In: Proceedings 2nd International Triticale Symposium, Passo Fundo, Brazil, pp 402–407Google Scholar
  52. Oettler G, Burger H, Melchinger AE (2003) Heterosis and combining ability for grain yield and other agronomic traits in winter triticale. Plant Breed 122:318–321CrossRefGoogle Scholar
  53. Oettler G, Heinrich N, Miedaner T (2004) Estimates of additive and dominance effects for Fusarium head blight resistance of winter triticale. Plant Breed 123:525–530CrossRefGoogle Scholar
  54. Oettler G, Tams SH, Utz HF, Bauer E, Melchinger AE (2005) Prospects for hybrid breeding in winter triticale: I. Heterosis and combining ability for agronomic traits in European elite germplasm. Crop Sci 45:1476–1482CrossRefGoogle Scholar
  55. Omarov DS (1976) Some selective genetic aspects of the biology of flowering and fertility in barley. In: Proceedings 3rd International Barley Genet Symposium Munich, pp 802–804Google Scholar
  56. Oury F-X, Brabant P, Berard P, Pluchard P (2000) Predicting hybrid value in bread wheat: biometric modeling based on a top-cross design. Theor Appl Genet 100:96–104CrossRefGoogle Scholar
  57. Ouyang Y, Chen J, Ding J, Zhang Q (2009) Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. Chinese Sci Bull 54:2332–2341CrossRefGoogle Scholar
  58. Perenzin M, Corbellini M, Accerbi M, Vaccion P, Borghi B (1998) Bread wheat: F1 hybrid performance and parental diversity estimates using molecular markers. Euphytica 100:273–279CrossRefGoogle Scholar
  59. Pickett AA (1993) Hybrid wheat—results and problems. In: Advances in Plant Breeding 15, Paul Parey Scientific Publishers, BerlinGoogle Scholar
  60. Piepho HP (1998) Methods for comparing the yield stability of cropping systems: a review. J Agron Crop Sci 180:193–213CrossRefGoogle Scholar
  61. Rajaram S (2001) Prospects and promise of wheat breeding in the 21st century. Euphytica 119:3–15CrossRefGoogle Scholar
  62. Ramage RT (1965) Balanced tertiary trisomics for use in hybrid seed production. Crop Sci 5:177–178CrossRefGoogle Scholar
  63. Ramage RT (1983) Heterosis and hybrid seed production in barley. In: Frankel R (ed) Heterosis: reappraisal of theory and practice. (Monogr Theor Appl Genet vol 6). Springer, Berlin Heidelberg New York, pp 71–93Google Scholar
  64. Reif JC, Gumpert F, Fischer S, Melchinger AE (2007) Impact of genetic divergence on additive and dominance variance in hybrid populations. Genetics 176:1931–1934PubMedCrossRefGoogle Scholar
  65. Reif JC, Kusterer B, Piepho H-P, Meyer RC, Altmann T, Schon CC, Melchinger AE (2009) Unraveling epistasis with triple testcross progenies of near-isogenic lines. Genetics 181:247–257PubMedCrossRefGoogle Scholar
  66. Schnell FW (1961) Heterosis and inbreeding effect. Schriftenreihe des Max-Planck-Instituts für Tierzucht und Tierernährung, pp 251–272 (in German)Google Scholar
  67. Schnell FW (1965) Die Covarianz zwischen Verwandten in einer genorthogonalen Population. I. Allgemeine Theorie. Biometrische Z 7:1–49 (in German)CrossRefGoogle Scholar
  68. Schnell FW, Geiger HH (1970) Zur Beeinflußung der Heterosis durch Epistasie. Die Naturwissenschaften 9:461–462 (in German)CrossRefGoogle Scholar
  69. Scholz F, Künzel G (1982) Progress and problems with hybrid barley. In: Barley Genetics IV, Proc 4th Barley Genet Symp, Edinburgh, UK, pp 758–765Google Scholar
  70. Shull GH (1908) The composition of a field of maize. Am Breeders Assoc Rep 4:296–301Google Scholar
  71. Si HM, Liu WZ, Fu YP, Sun ZX, Hu GC (2011) Current situation and suggestions for development of two-line hybrid rice in china. Chinese J Rice Sci 25:522–544 (in Chinese)Google Scholar
  72. Singh SK, Chatrath R, Mishra B (2010) Perspective of hybrid wheat research: a review. Indian J Agric Sci 80:1013–1027Google Scholar
  73. Suneson CA (1940) A male sterile character in barley. J Hered 31:213–214Google Scholar
  74. Virmani SS (1994) Prospects of hybrid rice in the tropics and subtropics. In: Hybrid rice technology: new developments and future prospects. Selected papers from the Int Rice Res Conf, Manila, pp 7–20Google Scholar
  75. Virmani SS (1996) Hybrid rice. Adv Agronomy 57:377–462CrossRefGoogle Scholar
  76. Virmani SS, Athwal DS (1972) Genetic variability in floral characteristics influencing outcrossing in Oryza sativa L. Crop Sci 13:66–67CrossRefGoogle Scholar
  77. Yan WG, Li SF (1987) Study on out-crossing characteristics among male sterile lines containing same nucleus in rice. Hybrid Rice 4:8–11 (in Chinese)Google Scholar
  78. Yan W, Li Y, Agrama H, Luo D, Gao F, Lu X, Ren G (2009) Association mapping of stigma and spikelet characteristics in rice. Mol Breed 24:277–292PubMedCrossRefGoogle Scholar
  79. Yang RC (2004) Epistasis of quantitative trait loci under different gene action models. Genetics 167:1493–1505PubMedCrossRefGoogle Scholar
  80. Yuan LP (1966) A preliminary report on male sterility in rice. Chinese Sci Bull 4:32–34 (in Chinese)Google Scholar
  81. Yuan LP, Virmani SS (1988) Status of hybrid rice research and development. In: Hybrid rice: Proc Int Symp Hybrid Rice in Changsha, Hunan, China, 1986. International Rice Research Institute, Manila, Philippines, pp 7–24Google Scholar
  82. Yuan LP, Yang ZY, Yang JB (1994) Hybrid rice research in China. In: Hybrid rice technology: New developments and future prospects. Selected papers from the International Rice Research Conference, Manila, pp 143–148Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Carl Friedrich Horst Longin
    • 1
    Email author
  • Jonathan Mühleisen
    • 1
  • Hans Peter Maurer
    • 1
  • Hongliang Zhang
    • 2
  • Manje Gowda
    • 1
  • Jochen Christoph Reif
    • 1
  1. 1.State Plant Breeding InstituteUniversity of HohenheimStuttgartGermany
  2. 2.Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina

Personalised recommendations