Skip to main content
Log in

Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The first single-nucleotide polymorphism (SNP) maps for watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai] were constructed and compared. Three populations were developed from crosses between two elite cultivars, Klondike Black Seeded × New Hampshire Midget (KBS × NHM), an elite cultivar and wild egusi accession, Strain II × PI 560023 (SII × Egusi) and an elite cultivar and a wild citron accession, ZWRM50 × PI 244019 (ZWRM × Citroides). The SII × Egusi and ZWRM × Citroides F2 populations consisted of 187 and 182 individuals respectively while the KBS × NHM recombinant inbred line (RIL) population consisted of 164 lines. The length of the genetic maps were 1,438, 1,514 and 1,144 cM with average marker distances of 3.8, 4.2, and 3.4 cM for the KBS × NHM, SII × Egusi and ZWRM × Citroides populations, respectively. Shared markers were used to align the three maps so that the linkage groups (LGs) represented the 11 chromosomes of the species. Marker segregation distortion were observed in all three populations, but was highest (12.7  %) in the ZWRM × Citroides population, where Citroides alleles were favored. The three maps were used to construct a consensus map containing 378 SNP markers with an average distance of 5.1 cM between markers. Phenotypic data was collected for fruit weight (FWT), fruit length (FL), fruit width (FWD), fruit shape index (FSI), rind thickness (RTH) and Brix (BRX) and analyzed for quantitative trait loci (QTL) associated with these traits. A total of 40 QTL were identified in the three populations, including major QTL for fruit size and shape that were stable across genetic backgrounds and environments. The present study reports the first SNP maps for Citrullus and the first map constructed using two elite parents. We also report the first stable QTL associated with fruit size and shape in Citrullus lanatus. These maps, QTL and SNPs should be useful for the watermelon community and represent a significant step towards the potential use of molecular tools in watermelon breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  PubMed  CAS  Google Scholar 

  • Buckler ES, Phelps-Durr TL, Buckler CSK, Dawe RK, Doebley JF, Holtsford TP (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–426

    PubMed  CAS  Google Scholar 

  • Che K-P, Liang C-Y, Wang Y-G, Jin D-M, Wang B, Xu Y, Kang G-B, Zhang H-Y (2003) Genetic assessment of watermelon germplasm using the AFLP technique. HortScience 38:81–84

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Dane F, Lang P (2004) Sequence variation at cpDNA regions of watermelons and related wild species: implications for evolution of Citrullus haplotypes. Am J Bot 91:1922–1929

    Article  PubMed  CAS  Google Scholar 

  • Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54:1255–1265

    Article  CAS  Google Scholar 

  • Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda M, Arus P, Nuez F, Monforte A, Pico M, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90

    Article  PubMed  Google Scholar 

  • Demir I, Mavi K (2004) The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds. Sci Horticult 102:467–473

    Article  Google Scholar 

  • deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    PubMed  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genet Mol Biol 142:285–294

    CAS  Google Scholar 

  • Esteras C, Gomez P, Monforte AJ, Blanca J, Vicente-Dolera N, Roig C, Nuez F, Pico B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 13:80

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Silva I, Moreno E, Essafi A, Fergany M, Garcia-Mas J, Martín-Hernandez A, Álvarez J, Monforte A (2010) Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor Appl Genet 121:931–940

    Article  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2011) Crop production. http://www.faostat.fao.org/site/567/default.aspx#ancor. Accessed 18 July 2011

  • Fursa TB (1972) K sistematic roda Citrullus Schrad. [On the taxonomy of genus Citrullus Schrad.]. Botanicheski Zhurnal 57:31–41

    Google Scholar 

  • Guner N, Wehner TC (2004) The genes of watermelon. HortScience 39:1175–1182

    CAS  Google Scholar 

  • Gusmini G, Wehner TC (2005) Foundations of yield improvement in watermelon. Crop Sci 45:141–146

    Google Scholar 

  • Gusmini G, Wehner TC (2007) Heritability and genetic variance estimates for fruit weight in watermelon. HortScience 42:1332–1336

    Google Scholar 

  • Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38

    Article  PubMed  CAS  Google Scholar 

  • Hashizume T, Shimamoto I, Harushima Y, Yui M, Sato T, Imai T, Hirai M (1996) Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) using random amplified polymorphic DNA (RAPD). Euphytica 90:265–273

    Article  CAS  Google Scholar 

  • Hashizume T, Shimamoto I, Hirai M (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (Thumb.) Matsum & Nakai] using RAPD, RFLP and ISSR markers. Theor Appl Genet 106:779–785

    PubMed  CAS  Google Scholar 

  • Hawkins LK, Dane F, Kubisiak TL, Rhodes BB, Jarret RL (2001) Linkage mapping in a watermelon population segregating for Fusarium wilt resistance. J Am Soc Hort Sci 126:344–350

    CAS  Google Scholar 

  • Henry RJ (2008) Plant genotyping II: SNP technology. CABI, Wallingford

    Book  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–111

    Google Scholar 

  • Jarret RL, Merrick LC, Holms T, Evans J, Aradhya MK (1997) Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Genome 40:433–441

    Article  PubMed  CAS  Google Scholar 

  • JMP Version 8.0.2 (2009) SAS Institute Inc., Cary, NC, 1989–2009

  • Kole C, Abbott AG (2008) Principles and practices of plant genomics, vol 1. Genome mapping Science Publishers, Enfield

  • Kumar R (2009) Inheritance of fruit yield and other horticulturally important traits in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. North Carolina State University, Raleigh

  • Levi A, Thomas CE (2005) Polymorphisms among chloroplast and mitochondrial geneomes of Citrullus species and subspecies. Genet Resour Crop Evol 52:609–617

    Article  CAS  Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC (2001a) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48:559–566

    Article  Google Scholar 

  • Levi A, Thomas CE, XP XPZ, Joobeur T, Dean RE, Wehner TC, Carle BR (2001b) A genetic linkage map for watermelon based on randomly ampliWed polymorphic DNA markers. J Hort Sci 126:730–737

    CAS  Google Scholar 

  • Levi A, Thomas C, Joobeur T, Zhang X, Davis A (2002) A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var. citroides × C. lanatus var. lanatus) × Citrullus colocynthis. Theor Appl Genet 105:555–563

    Article  PubMed  CAS  Google Scholar 

  • Levi A, Thomas CE, Trebitsh T, Salman A, King J, Karalius J, Newman M, Reddy OUK, Xu Y, Zhang X (2006) An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR, and RAPD markers. J Am Soc Hort Sci 131:393–402

    CAS  Google Scholar 

  • Levi A, Wechter P, Massey L, Carter L, Hopkins D (2011) An extended genetic linkage map for watermelon based on a testcross and a BC2F2 population. Am J Plant Sci 2:93–110

    Article  CAS  Google Scholar 

  • MacGillivray JH (1947) Soluble solids content of different regions of watermelon. Plant Physiol 22:637–640

    Article  PubMed  CAS  Google Scholar 

  • Maynard DN (2001) An introduction to the watermelon. In: Maynard DN (ed) Watermelon characteristics, production and marketing. ASHS Press, Alexandria, pp 9–20

    Google Scholar 

  • McGregor CE (2011) Citrullus lanatus germplasm of Southern Africa. Isr J Plant Sci (in press)

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Resour 8:4321–4325

    Article  CAS  Google Scholar 

  • Navot N, Sarfatti M, Zamir D (1990) Linkage relationships of genes affecting bitterness and flesh color in watermelon. J Hered 81:162–165

    Google Scholar 

  • Nerson H (2002) Effects of seed maturity, extraction practices and storage duration on germinability in watermelon. Sci Horticult 93:245–256

    Article  Google Scholar 

  • Nimmakayala P, Tomason YR, Jeong J, Ponniah SK, Karunathilake A, Levi A, Perumal R, Reddy UK (2010) Genetic reticulation and interrelationships among Citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Plant Genetic Resour 8:16–25

    Article  CAS  Google Scholar 

  • Nyquist WE, Baker R (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Perin C, Hagen S, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034

    Article  PubMed  CAS  Google Scholar 

  • Périn C, Hagen L, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics 266:933–941

    Article  PubMed  Google Scholar 

  • Poole CF, Grimball PC (1945) Interaction of sex, shape, and weight genes in watermelon. J Agric Res 71:533–552

    PubMed  CAS  Google Scholar 

  • Porter DR (1933) Watermelon breeding. Hilgardia 7:533–552

    Google Scholar 

  • Porter DR (1937) Inheritance of certain fruit and seed characters in watermelons. Hilgardia 10:489–509

    Google Scholar 

  • Porter DR, Bission CS, Allinger HW (1940) Factors affecting the total soluble solids, reducing sugars, and sucrose in watermelons. Hilgardia 13:31–66

    CAS  Google Scholar 

  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One 7:e29453

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372

    Article  PubMed  Google Scholar 

  • Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International Publishing, Oxon

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  • Showalter RK (1961) Specific gravity, weight, and solids relationships in watermelons. Florida St Hort Soc 74:268–271

    Google Scholar 

  • Tang S, Okashah R, Knapp S, Arnold M, Martin N (2010) Transmission ratio distortion results in asymmetric introgression in Louisiana Iris. BMC Plant Biol 10:48

    Article  PubMed  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  PubMed  CAS  Google Scholar 

  • United States Department of Agriculture—National Agricultural Statistics Service (2011) 2010 Agricultural Statistics. http://www.nass.usda.gov/Publications/Ag_Statistics/2010/index.asp. Accessed 09 July 2011

  • Van Ooijen JW (2006) JoinMap®4 Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

  • Weetman LM (1937) Inheritance and correlation of shape, size and color in the watermelon Citrullus vulgaris Schrad. Iowa Agric Exp Station Ann Bull 228:224–256

    Google Scholar 

  • Wehner T (2008) Watermelon. In: Prohens J, Nuez F (eds) Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. Springer, New York, pp 381–418

    Google Scholar 

  • Wehner TC, Shetty NV, Elmstron GW (2001) Breeding and seed production. In: Maynard DN (ed) Watermelons: characteristics, production, and marketing. ASHS Press, Alexandria, pp 27–73

    Google Scholar 

  • Yuan X, Pan J, Cai R, Guan Y, Liu L, Zhang W, Li Z, He H, Zhang C, Si L, Zhu L (2008a) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491

    Article  CAS  Google Scholar 

  • Yuan XJ, Li XZ, Pan JS, Wang G, Jiang S, Li XH, Deng SL, He HL, Si MX, Lai L, Wu AZ, Zhu LH, Cai R (2008b) Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breed 127:180–188

    Article  CAS  Google Scholar 

  • Zalapa J, Staub J, McCreight J, Chung S, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. PNAS 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang R, Xu Y, Yi K, Zhang H, Liu L, Gong G, Levi A (2004) A genetic linkage map for watermelon derived from recombinant inbred lines. J Am Soc Hort Sci 129:237–243

    CAS  Google Scholar 

  • Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T (2007) A consensus map for Cucurbita pepo. Mol Breed 20:375–388

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Monsanto. The authors thank Hussein Abdel-Haleem for assistance with heritability calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia McGregor.

Additional information

Communicated by M. Havey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 33 kb)

Supplementary material 2 (DOCX 861 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandlin, K., Prothro, J., Heesacker, A. et al. Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125, 1603–1618 (2012). https://doi.org/10.1007/s00122-012-1938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1938-z

Keywords

Navigation