Theoretical and Applied Genetics

, Volume 125, Issue 8, pp 1603–1618 | Cite as

Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]

  • Katherine Sandlin
  • Jason Prothro
  • Adam Heesacker
  • Nelly Khalilian
  • Rebecca Okashah
  • Wenwen Xiang
  • Eleni Bachlava
  • David G. Caldwell
  • Chris A. Taylor
  • Danelle K. Seymour
  • Victoria White
  • Eva Chan
  • Greg Tolla
  • Cathy White
  • Dolores Safran
  • Elaine Graham
  • Steven Knapp
  • Cecilia McGregor
Original Paper

Abstract

The first single-nucleotide polymorphism (SNP) maps for watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai] were constructed and compared. Three populations were developed from crosses between two elite cultivars, Klondike Black Seeded × New Hampshire Midget (KBS × NHM), an elite cultivar and wild egusi accession, Strain II × PI 560023 (SII × Egusi) and an elite cultivar and a wild citron accession, ZWRM50 × PI 244019 (ZWRM × Citroides). The SII × Egusi and ZWRM × Citroides F2 populations consisted of 187 and 182 individuals respectively while the KBS × NHM recombinant inbred line (RIL) population consisted of 164 lines. The length of the genetic maps were 1,438, 1,514 and 1,144 cM with average marker distances of 3.8, 4.2, and 3.4 cM for the KBS × NHM, SII × Egusi and ZWRM × Citroides populations, respectively. Shared markers were used to align the three maps so that the linkage groups (LGs) represented the 11 chromosomes of the species. Marker segregation distortion were observed in all three populations, but was highest (12.7  %) in the ZWRM × Citroides population, where Citroides alleles were favored. The three maps were used to construct a consensus map containing 378 SNP markers with an average distance of 5.1 cM between markers. Phenotypic data was collected for fruit weight (FWT), fruit length (FL), fruit width (FWD), fruit shape index (FSI), rind thickness (RTH) and Brix (BRX) and analyzed for quantitative trait loci (QTL) associated with these traits. A total of 40 QTL were identified in the three populations, including major QTL for fruit size and shape that were stable across genetic backgrounds and environments. The present study reports the first SNP maps for Citrullus and the first map constructed using two elite parents. We also report the first stable QTL associated with fruit size and shape in Citrullus lanatus. These maps, QTL and SNPs should be useful for the watermelon community and represent a significant step towards the potential use of molecular tools in watermelon breeding.

Keywords

Quantitative Trait Locus Recombinant Inbred Line Segregation Distortion Single Nucleotide Polymorphism Marker Fruit Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was funded by Monsanto. The authors thank Hussein Abdel-Haleem for assistance with heritability calculations.

Supplementary material

122_2012_1938_MOESM1_ESM.xlsx (33 kb)
Supplementary material 1 (XLSX 33 kb)
122_2012_1938_MOESM2_ESM.docx (862 kb)
Supplementary material 2 (DOCX 861 kb)

References

  1. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326PubMedCrossRefGoogle Scholar
  2. Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224PubMedCrossRefGoogle Scholar
  3. Buckler ES, Phelps-Durr TL, Buckler CSK, Dawe RK, Doebley JF, Holtsford TP (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–426PubMedGoogle Scholar
  4. Che K-P, Liang C-Y, Wang Y-G, Jin D-M, Wang B, Xu Y, Kang G-B, Zhang H-Y (2003) Genetic assessment of watermelon germplasm using the AFLP technique. HortScience 38:81–84Google Scholar
  5. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  6. Dane F, Lang P (2004) Sequence variation at cpDNA regions of watermelons and related wild species: implications for evolution of Citrullus haplotypes. Am J Bot 91:1922–1929PubMedCrossRefGoogle Scholar
  7. Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54:1255–1265CrossRefGoogle Scholar
  8. Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda M, Arus P, Nuez F, Monforte A, Pico M, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90PubMedCrossRefGoogle Scholar
  9. Demir I, Mavi K (2004) The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds. Sci Horticult 102:467–473CrossRefGoogle Scholar
  10. deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596PubMedGoogle Scholar
  11. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genet Mol Biol 142:285–294Google Scholar
  12. Esteras C, Gomez P, Monforte AJ, Blanca J, Vicente-Dolera N, Roig C, Nuez F, Pico B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 13:80PubMedCrossRefGoogle Scholar
  13. Fernandez-Silva I, Moreno E, Essafi A, Fergany M, Garcia-Mas J, Martín-Hernandez A, Álvarez J, Monforte A (2010) Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor Appl Genet 121:931–940PubMedCrossRefGoogle Scholar
  14. Food and Agriculture Organization of the United Nations (2011) Crop production. http://www.faostat.fao.org/site/567/default.aspx#ancor. Accessed 18 July 2011
  15. Fursa TB (1972) K sistematic roda Citrullus Schrad. [On the taxonomy of genus Citrullus Schrad.]. Botanicheski Zhurnal 57:31–41Google Scholar
  16. Guner N, Wehner TC (2004) The genes of watermelon. HortScience 39:1175–1182Google Scholar
  17. Gusmini G, Wehner TC (2005) Foundations of yield improvement in watermelon. Crop Sci 45:141–146Google Scholar
  18. Gusmini G, Wehner TC (2007) Heritability and genetic variance estimates for fruit weight in watermelon. HortScience 42:1332–1336Google Scholar
  19. Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38PubMedCrossRefGoogle Scholar
  20. Hashizume T, Shimamoto I, Harushima Y, Yui M, Sato T, Imai T, Hirai M (1996) Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) using random amplified polymorphic DNA (RAPD). Euphytica 90:265–273CrossRefGoogle Scholar
  21. Hashizume T, Shimamoto I, Hirai M (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (Thumb.) Matsum & Nakai] using RAPD, RFLP and ISSR markers. Theor Appl Genet 106:779–785PubMedGoogle Scholar
  22. Hawkins LK, Dane F, Kubisiak TL, Rhodes BB, Jarret RL (2001) Linkage mapping in a watermelon population segregating for Fusarium wilt resistance. J Am Soc Hort Sci 126:344–350Google Scholar
  23. Henry RJ (2008) Plant genotyping II: SNP technology. CABI, WallingfordCrossRefGoogle Scholar
  24. Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–111Google Scholar
  25. Jarret RL, Merrick LC, Holms T, Evans J, Aradhya MK (1997) Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Genome 40:433–441PubMedCrossRefGoogle Scholar
  26. JMP Version 8.0.2 (2009) SAS Institute Inc., Cary, NC, 1989–2009Google Scholar
  27. Kole C, Abbott AG (2008) Principles and practices of plant genomics, vol 1. Genome mapping Science Publishers, EnfieldGoogle Scholar
  28. Kumar R (2009) Inheritance of fruit yield and other horticulturally important traits in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. North Carolina State University, RaleighGoogle Scholar
  29. Levi A, Thomas CE (2005) Polymorphisms among chloroplast and mitochondrial geneomes of Citrullus species and subspecies. Genet Resour Crop Evol 52:609–617CrossRefGoogle Scholar
  30. Levi A, Thomas CE, Keinath AP, Wehner TC (2001a) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48:559–566CrossRefGoogle Scholar
  31. Levi A, Thomas CE, XP XPZ, Joobeur T, Dean RE, Wehner TC, Carle BR (2001b) A genetic linkage map for watermelon based on randomly ampliWed polymorphic DNA markers. J Hort Sci 126:730–737Google Scholar
  32. Levi A, Thomas C, Joobeur T, Zhang X, Davis A (2002) A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var. citroides × C. lanatus var. lanatus) × Citrullus colocynthis. Theor Appl Genet 105:555–563PubMedCrossRefGoogle Scholar
  33. Levi A, Thomas CE, Trebitsh T, Salman A, King J, Karalius J, Newman M, Reddy OUK, Xu Y, Zhang X (2006) An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR, and RAPD markers. J Am Soc Hort Sci 131:393–402Google Scholar
  34. Levi A, Wechter P, Massey L, Carter L, Hopkins D (2011) An extended genetic linkage map for watermelon based on a testcross and a BC2F2 population. Am J Plant Sci 2:93–110CrossRefGoogle Scholar
  35. MacGillivray JH (1947) Soluble solids content of different regions of watermelon. Plant Physiol 22:637–640PubMedCrossRefGoogle Scholar
  36. Maynard DN (2001) An introduction to the watermelon. In: Maynard DN (ed) Watermelon characteristics, production and marketing. ASHS Press, Alexandria, pp 9–20Google Scholar
  37. McGregor CE (2011) Citrullus lanatus germplasm of Southern Africa. Isr J Plant Sci (in press)Google Scholar
  38. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758PubMedCrossRefGoogle Scholar
  39. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Resour 8:4321–4325CrossRefGoogle Scholar
  40. Navot N, Sarfatti M, Zamir D (1990) Linkage relationships of genes affecting bitterness and flesh color in watermelon. J Hered 81:162–165Google Scholar
  41. Nerson H (2002) Effects of seed maturity, extraction practices and storage duration on germinability in watermelon. Sci Horticult 93:245–256CrossRefGoogle Scholar
  42. Nimmakayala P, Tomason YR, Jeong J, Ponniah SK, Karunathilake A, Levi A, Perumal R, Reddy UK (2010) Genetic reticulation and interrelationships among Citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Plant Genetic Resour 8:16–25CrossRefGoogle Scholar
  43. Nyquist WE, Baker R (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322CrossRefGoogle Scholar
  44. Perin C, Hagen S, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034PubMedCrossRefGoogle Scholar
  45. Périn C, Hagen L, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics 266:933–941PubMedCrossRefGoogle Scholar
  46. Poole CF, Grimball PC (1945) Interaction of sex, shape, and weight genes in watermelon. J Agric Res 71:533–552PubMedGoogle Scholar
  47. Porter DR (1933) Watermelon breeding. Hilgardia 7:533–552Google Scholar
  48. Porter DR (1937) Inheritance of certain fruit and seed characters in watermelons. Hilgardia 10:489–509Google Scholar
  49. Porter DR, Bission CS, Allinger HW (1940) Factors affecting the total soluble solids, reducing sugars, and sucrose in watermelons. Hilgardia 13:31–66Google Scholar
  50. Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One 7:e29453PubMedCrossRefGoogle Scholar
  51. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372PubMedCrossRefGoogle Scholar
  52. Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International Publishing, OxonGoogle Scholar
  53. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611Google Scholar
  54. Showalter RK (1961) Specific gravity, weight, and solids relationships in watermelons. Florida St Hort Soc 74:268–271Google Scholar
  55. Tang S, Okashah R, Knapp S, Arnold M, Martin N (2010) Transmission ratio distortion results in asymmetric introgression in Louisiana Iris. BMC Plant Biol 10:48PubMedCrossRefGoogle Scholar
  56. Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189PubMedCrossRefGoogle Scholar
  57. United States Department of Agriculture—National Agricultural Statistics Service (2011) 2010 Agricultural Statistics. http://www.nass.usda.gov/Publications/Ag_Statistics/2010/index.asp. Accessed 09 July 2011
  58. Van Ooijen JW (2006) JoinMap®4 Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, WageningenGoogle Scholar
  59. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  60. Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, RaleighGoogle Scholar
  61. Weetman LM (1937) Inheritance and correlation of shape, size and color in the watermelon Citrullus vulgaris Schrad. Iowa Agric Exp Station Ann Bull 228:224–256Google Scholar
  62. Wehner T (2008) Watermelon. In: Prohens J, Nuez F (eds) Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. Springer, New York, pp 381–418Google Scholar
  63. Wehner TC, Shetty NV, Elmstron GW (2001) Breeding and seed production. In: Maynard DN (ed) Watermelons: characteristics, production, and marketing. ASHS Press, Alexandria, pp 27–73Google Scholar
  64. Yuan X, Pan J, Cai R, Guan Y, Liu L, Zhang W, Li Z, He H, Zhang C, Si L, Zhu L (2008a) Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164:473–491CrossRefGoogle Scholar
  65. Yuan XJ, Li XZ, Pan JS, Wang G, Jiang S, Li XH, Deng SL, He HL, Si MX, Lai L, Wu AZ, Zhu LH, Cai R (2008b) Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breed 127:180–188CrossRefGoogle Scholar
  66. Zalapa J, Staub J, McCreight J, Chung S, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201PubMedCrossRefGoogle Scholar
  67. Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. PNAS 90:10972–10976PubMedCrossRefGoogle Scholar
  68. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar
  69. Zhang R, Xu Y, Yi K, Zhang H, Liu L, Gong G, Levi A (2004) A genetic linkage map for watermelon derived from recombinant inbred lines. J Am Soc Hort Sci 129:237–243Google Scholar
  70. Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T (2007) A consensus map for Cucurbita pepo. Mol Breed 20:375–388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Katherine Sandlin
    • 1
  • Jason Prothro
    • 1
  • Adam Heesacker
    • 1
    • 5
  • Nelly Khalilian
    • 1
  • Rebecca Okashah
    • 1
  • Wenwen Xiang
    • 2
  • Eleni Bachlava
    • 2
  • David G. Caldwell
    • 3
  • Chris A. Taylor
    • 1
    • 3
  • Danelle K. Seymour
    • 2
    • 4
  • Victoria White
    • 2
  • Eva Chan
    • 2
  • Greg Tolla
    • 2
  • Cathy White
    • 2
  • Dolores Safran
    • 2
  • Elaine Graham
    • 2
  • Steven Knapp
    • 1
    • 2
  • Cecilia McGregor
    • 6
  1. 1.Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensUSA
  2. 2.MonsantoWoodlandUSA
  3. 3.MonsantoChesterfieldUSA
  4. 4.Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
  5. 5.Crop and Soil Science DepartmentOregon State UniversityCorvallisUSA
  6. 6.Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensUSA

Personalised recommendations