Theoretical and Applied Genetics

, Volume 125, Issue 6, pp 1113–1124 | Cite as

A genetic linkage map of Brassica carinata constructed with a doubled haploid population

  • Shaomin Guo
  • Jun Zou
  • Ruiyan Li
  • Yan Long
  • Sheng Chen
  • Jinling Meng
Original Paper

Abstract

Brassica carinata is an important oilseed crop with unique favourable traits that are desirable for other Brassica crops. However, given the limited research into genetic resources in B. carinata, knowledge of the genetic structure of this species is relatively poor. Nine homozygous, genetically distinct accessions of B. carinata were obtained via microspore culture, from which two divergent doubled haploid (DH) lines were used to develop a DH mapping population that consisted of 183 lines. The mapping population showed segregation of multiple traits of interest. A genetic map was constructed with PCR-based markers, and a total of 212 loci, which covered 1,703 cM, were assigned to eight linkage groups in the B genome and nine linkage groups in the C genome, which allowed comparison with genetic maps of other important Brassica species that contain the B/C genome(s). Loci for two Mendelian-inherited traits related to pigmentation (petal and anther tip colour) and one quantitative trait (seed coat colour) were identified using the linkage map. The significance of the mapping population in the context of genetic improvement of Brassica crops is discussed.

Supplementary material

122_2012_1898_MOESM1_ESM.ppt (4.3 mb)
Supplementary material 1 (PPT 4375 kb)
122_2012_1898_MOESM2_ESM.doc (54 kb)
Supplementary material 2 (DOC 54 kb)
122_2012_1898_MOESM3_ESM.doc (72 kb)
Supplementary material 3 (DOC 71 kb)

References

  1. Alemayehu N, Becker H (2002) Genotypic diversity and patterns of variation in a germplasm material of Ethiopian mustard (Brassica carinata A. Braun). Genet Resour Crop Evol 49:573–582CrossRefGoogle Scholar
  2. Arabidopsis Genome Iniative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  3. Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, De Haro A, Font R, Lühs W, Friedt W (2006) Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49:1499–1509PubMedCrossRefGoogle Scholar
  4. Brock MT, Dechaine JM, Iniguez-Luy FL, Maloof JN, Stinchcombe JR, Weinig C (2010) Floral genetic architecture: an examination of QTL architecture underlying floral (Co)variation across environments. Genetics 186:1451–1465PubMedCrossRefGoogle Scholar
  5. Chen S, Zou J, Cowling WA, Meng J (2010) Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop Pasture Sci 61:483–492CrossRefGoogle Scholar
  6. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131PubMedCrossRefGoogle Scholar
  7. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park B-S, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792PubMedCrossRefGoogle Scholar
  8. Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  9. Deynze AEV, Beversdorf WD, Pauls KP (1993) Temperature effects on seed color in black- and yellow-seeded rapeseed. Can J Plant Sci 73:383–387CrossRefGoogle Scholar
  10. Engels J (1984) Genetic variation in Ethiopian Brassica ssp. Crucif Newslett 9:59–60Google Scholar
  11. Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121:1289–1301PubMedCrossRefGoogle Scholar
  12. Fu F-Y, Liu L-Z, Chai Y-R, Chen L, Yang T, Jin M-Y, Ma A-F, Yan X-Y, Zhang Z-S, Li J-N (2007) Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 50:840–854PubMedCrossRefGoogle Scholar
  13. Getinet A, Rakow G, Downey RK (1996) Agronomic performance and seed quality of Ethiopian mustard in Saskatchewan. Can J Plant Sci 76:387–392CrossRefGoogle Scholar
  14. Iniguez-Luy F, Lukens L, Farnham M, Amasino R, Osborn T (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet 120:31–43PubMedCrossRefGoogle Scholar
  15. Jadhav A, Katavic V, Marillia E-F, Michael Giblin E, Barton DL, Kumar A, Sonntag C, Babic V, Keller WA, Taylor DC (2005) Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng 7:215–220PubMedCrossRefGoogle Scholar
  16. Jagannath A, Sodhi Y, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma P, Pradhan A, Pental D (2011) Eliminating expression of erucic acid-encoding loci allows the identification of “hidden” QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet 122:1091–1103PubMedCrossRefGoogle Scholar
  17. Jiang Y, Tian E, Li R, Chen L, Meng J (2007) Genetic diversity of Brassica carinata with emphasis on the interspecific crossability with B. rapa. Plant Breed 126:487–491CrossRefGoogle Scholar
  18. Jönsson R (1978) Breeding for improved oil and meal quality in rape (Brassica napus L.) and turnip rape (Brassica campestris L.). Hereditas 87:205–218CrossRefGoogle Scholar
  19. Kim H, Choi S, Bae J, Hong C, Lee S, Hossain M, Van Nguyen D, Jin M, Park B-S, Bang J-W, Bancroft I, Lim Y (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10:432PubMedCrossRefGoogle Scholar
  20. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  21. Lagercrantz U, Lydiate DJ (1995) RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses. Genome 38:255–264PubMedCrossRefGoogle Scholar
  22. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  23. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genome wide alignment with Arabidopsis. Genetics 177:2433–2444PubMedGoogle Scholar
  24. Lou P, Xie Q, Xu X, Edwards C, Brock M, Weinig C, McClung C (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397–409PubMedCrossRefGoogle Scholar
  25. Lukens LN, Quijada PA, Udall J, Pires JC, Schranz ME, Osborn TC (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linn Soc 82:665–674CrossRefGoogle Scholar
  26. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525PubMedCrossRefGoogle Scholar
  27. Mahmood T, Rahman MH, Stringam GR, Raney JP, Good AG (2005) Molecular markers for seed colour in Brassica juncea. Genome 48:755–760PubMedCrossRefGoogle Scholar
  28. Meng J, Shi S, Gan L, Li Z, Qu X (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329–333CrossRefGoogle Scholar
  29. Möllers C, Iqbal MCM, Röbbelen G (1994) Efficient production of doubled haploid Brassica napus plants by colchicine treatment of microspores. Euphytica 75:95–104CrossRefGoogle Scholar
  30. Nagaoka T, Doullah M, Matsumoto S, Kawasaki S, Ishikawa T, Hori H, Okazaki K (2010) Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theor Appl Genet 120:1335–1346PubMedCrossRefGoogle Scholar
  31. Navabi ZK, Stead KE, Pires JC, Xiong Z, Sharpe AG, Parkin IAP, Rahman MH, Good AG (2011) Analysis of B-genome chromosome introgression in interspecific hybrids of Brassica napus × B. carinata. Genetics 187:659–673PubMedCrossRefGoogle Scholar
  32. Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83:4327–4341PubMedCrossRefGoogle Scholar
  33. Padmaja KL, Arumugam N, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2005) Mapping and tagging of seed coat colour and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea. Theor Appl Genet 111:8–14PubMedCrossRefGoogle Scholar
  34. Panjabi P, Jagannath A, Bisht N, Padmaja KL, Sharma S, Gupta V, Pradhan A, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113PubMedCrossRefGoogle Scholar
  35. Parkin I (2011) Chasing ghosts: comparative mapping in the Brassicaceae. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 153–170CrossRefGoogle Scholar
  36. Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw CA, Belmont J, Cheung SW, Shen RM, Barker DL, Gunderson KL (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16:1136–1148PubMedCrossRefGoogle Scholar
  37. Piotrowska A, Krymanski J, Bartkowiak-Broda I, Krotka K (2003) Characteristic of yellow-seeded lines of winter oilseed rape. In: Sørensen H (ed) Proc 11th Int Rapeseed Conf. The Royal Veterinary and Agricultural University, Frederiksberg, pp 247–249Google Scholar
  38. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80PubMedCrossRefGoogle Scholar
  39. Quiros CF, Kianian SF, Ochoa O, Douches D (1985) Genome evolution in Brassica: use of molecular markers and cytogenetic stocks. Cruciferae Newslett 10:21–23Google Scholar
  40. Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558PubMedCrossRefGoogle Scholar
  41. Rahman MH (2001) Production of yellow seeded Brassica napus through interspecific crosses. Plant Breed 120:463–472CrossRefGoogle Scholar
  42. Raman H, Raman R, Nelson MN, Aslam MN, Rajasekaran R, Wratten N, Cowling WA, Kilian A, Sharpe AG, Schondelmaier J (2012) Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.). DNA Res 19:51–65PubMedCrossRefGoogle Scholar
  43. Ramchiary N, Padmaja K, Sharma S, Gupta V, Sodhi Y, Mukhopadhyay A, Arumugam N, Pental D, Pradhan A (2007) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet 115:807–817PubMedCrossRefGoogle Scholar
  44. Rodríguez-Suárez C, Giménez M, Gutiérrez N, Ávila C, Machado A, Huttner E, Ramírez M, Martín A, Castillo A, Kilian A, Atienza S (2011) Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. Theor Appl Genet. p 1–10Google Scholar
  45. Rohlf FJ (2008) NTSYSpc: Numerical Taxonomy System. 2.21o edn. Exeter Publishing, New YorkGoogle Scholar
  46. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542PubMedCrossRefGoogle Scholar
  47. Seegeler CJP (1983) Oil plants in Ethiopia: their taxonomy and agricultural significance. Agricultural University, Wageningen, p 368Google Scholar
  48. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861PubMedCrossRefGoogle Scholar
  49. Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San FranciscoGoogle Scholar
  50. Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 75:784–794CrossRefGoogle Scholar
  51. Stringam GR, McGregor DI, Pawlowski SH (1974) Chemical and morphological characteristics associated with seedcoat color in rapeseed. Proc 4 Int Rapeseed Conf, Giessen, pp 99–108Google Scholar
  52. Struss D, Quiros C, Plieske J, Röbbelen G (1996) Construction of Brassica B genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular markers. Theor Appl Genet 93:1026–1032CrossRefGoogle Scholar
  53. Tang ZL, Li JN, Zhang XK, Chen L, Wang R (1997) Genetic variation of yellow-seeded rapeseed lines (Brassica napus L.) from different genetic sources. Plant Breed 116:471–474CrossRefGoogle Scholar
  54. The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035-1039Google Scholar
  55. UN (1935) Genome analysis in Brassica with special reference to the exprimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot: p 389–452Google Scholar
  56. Van Ooijen J (2006) JoinMap Version 4.0 Software for the calculation of genetics linkage maps. Kyazma, WageningenGoogle Scholar
  57. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedCrossRefGoogle Scholar
  58. Velasco L, Nabloussi A, De Haro A, Fernández-Martínez JM (2003) Development of high-oleic, low-linolenic acid Ethiopian-mustard (Brassica carinata) germplasm. Theor Appl Genet 107:823–830PubMedCrossRefGoogle Scholar
  59. Vos P, Hogers R, Bleeker M, Reijans M, Tvd Lee, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  60. Wang S, Basten CJ, Zeng Z-B (2010) Windows QTL Cartographer V2.5. Raleigh, NCGoogle Scholar
  61. Wang J, Lydiate D, Parkin I, Falentin C, Delourme R, Carion P, King G (2011) Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12:101PubMedCrossRefGoogle Scholar
  62. Warwick SI (2011) Brassicaceae in agriculture. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 33–67CrossRefGoogle Scholar
  63. Warwick SI, Gugel RK, McDonald T, Falk KC (2006) Genetic variation of Ethiopian mustard (Brassica carinata A. Braun) germplasm in western Canada. Genet Resour Crop Evol 53:297–312CrossRefGoogle Scholar
  64. Xiao Y, Chen L, Zou J, Tian E, Xia W, Meng J (2010) Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theor Appl Genet 121:1141–1150PubMedCrossRefGoogle Scholar
  65. Yan X, Li J, Fu F, Jin M, Chen L, Liu L (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170:355–364CrossRefGoogle Scholar
  66. Yang Y-W, Lai K-N, Tai P-Y, Li W-H (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604PubMedCrossRefGoogle Scholar
  67. Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2011) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 123:1–15CrossRefGoogle Scholar
  68. Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, Tu J, Fu T, Meng J (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Shaomin Guo
    • 1
  • Jun Zou
    • 1
  • Ruiyan Li
    • 1
  • Yan Long
    • 1
  • Sheng Chen
    • 2
  • Jinling Meng
    • 1
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  2. 2.School of Plant Biology and The UWA Institute of AgricultureThe University of Western AustraliaCrawleyAustralia

Personalised recommendations