Advertisement

Theoretical and Applied Genetics

, Volume 125, Issue 5, pp 825–836 | Cite as

Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars

  • L. Costet
  • L. Le Cunff
  • S. Royaert
  • L.-M. Raboin
  • C. Hervouet
  • L. Toubi
  • H. Telismart
  • O. Garsmeur
  • Y. Rousselle
  • J. Pauquet
  • S. Nibouche
  • J.-C. Glaszmann
  • J.-Y. Hoarau
  • A. D’HontEmail author
Original Paper

Abstract

Modern sugarcane cultivars (Saccharum spp., 2n = 100–130) are high polyploid, aneuploid and of interspecific origin. A major gene (Bru1) conferring resistance to brown rust, caused by the fungus Puccinia melanocephala, has been identified in cultivar R570. We analyzed 380 modern cultivars and breeding materials covering the worldwide diversity with 22 molecular markers genetically linked to Bru1 in R570 within a 8.2 cM segment. Our results revealed a strong LD in the Bru1 region and strong associations between most of the markers and rust resistance. Two PCR markers, that flank the Bru1-bearing segment, were found completely associated with one another and only in resistant clones representing efficient molecular diagnostic for Bru1. On this basis, Bru1 was inferred in 86 % of the 194 resistant sugarcane accessions, revealing that it constitutes the main source of brown rust resistance in modern cultivars. Bru1 PCR diagnostic markers should be particularly useful to identify cultivars with potentially alternative sources of resistance to diversify the basis of brown rust resistance in breeding programs.

Keywords

Sugarcane Rust Resistance Modern Cultivar Resistant Accession Brown Rust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Audrey Anglade and Emmanuelle Chapier for lab work, Iréné Promi, Cedric Lallemand, Jean-Marie Coupan for fieldwork and Jacques Dintinger for helpful discussions. This work was funded by the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), by the Conseil Régional de la Réunion and by the European Union: European Regional Development Fund (ERDF); it was made possible by earlier projects supported by the ICSB.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments presented in this publication comply with the current laws of France.

Supplementary material

122_2012_1875_MOESM1_ESM.doc (35 kb)
Supplementary material 1 (DOC 35 kb)
122_2012_1875_MOESM2_ESM.doc (196 kb)
Supplementary material 2 (DOC 197 kb)
122_2012_1875_MOESM3_ESM.doc (164 kb)
Supplementary material 3 (DOC 164 kb)

References

  1. Aitken K, Hermann S, Karno K, Bonnett G, McIntyre L, Jackson P (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117:1191–1203PubMedCrossRefGoogle Scholar
  2. Anderson D, Dean J (1986) Relationship of rust severity and plant nutrients in sugarcane. Phytopathology 76:581–585CrossRefGoogle Scholar
  3. Asnaghi C (2000) Caractérisation d’un facteur génétique majeur de résistance à la rouille chez la canne à sucre. Doctorat thesis. Université Paris-SudGoogle Scholar
  4. Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D’Hont A (2000) Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor Appl Genet 101:962–969CrossRefGoogle Scholar
  5. Asnaghi C, D’Hont A, Glaszmann JC, Rott P (2001) Resistance of sugarcane cultivar R570 to Puccinia melanocephala isolates from different geographic locations. Plant Dis 85:282–286CrossRefGoogle Scholar
  6. Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau JY, Télismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764PubMedCrossRefGoogle Scholar
  7. Berding N, Skinner JC, Ledger PE (1984) Naturally-infected bench test for screening sugarcane clones against common rust (Puccinia melanocephala H. & P. Syd.). Prot Ecol 6:101–104Google Scholar
  8. Butterfield M (2007) Marker assisted breeding in sugarcane: a complex polyploid. PhD thesis University of StellenboschGoogle Scholar
  9. Cadet P, McFarlane SA, Meyer JH (2003) Association between nutrients and rust in sugarcane in Kwazulu-Natal. Proc South Afr Sug 77:223–229Google Scholar
  10. Comstock JC (1992) Effect of rust on sugarcane growth and biomass. Plant Dis 76:175–177CrossRefGoogle Scholar
  11. Comstock J, Wu K, Schnell R (1992) Heritability of resistance to sugar cane rust. Sugar Cane 6:7–10Google Scholar
  12. Comstock JC, Shine JM, Dean JL, Irey MS (1994) Races of the sugarcane common rust pathogen, Puccinia melanocephala, in Florida. (Abstr.). Phytopathology 84:867Google Scholar
  13. Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064CrossRefGoogle Scholar
  14. Dean JL, Purdy LH (1984) Races of the sugar cane rust fungus, Puccinia melanocephala, found in Florida. Sugar Cane 1:15–16Google Scholar
  15. D’Hont A, Grivet L, Feldmann P, Glaszmann J, Rao S, Berding N (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413PubMedGoogle Scholar
  16. Garsmeur O, Charron C, Bocs S, Jouffe V, Samain S, Couloux A, Droc G, Zini C, Glaszmann J-C, Van Sluys M-A, D’Hont A (2011) High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane. New Phytol 189:629–642PubMedCrossRefGoogle Scholar
  17. Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127PubMedCrossRefGoogle Scholar
  18. Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97CrossRefGoogle Scholar
  19. Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037PubMedCrossRefGoogle Scholar
  20. Hoarau JY, Souza G, D’Hont A, Menossi M, Pinto LR, Pereira de Souza A, Grivet L, Menck CF, Ulian EC, Vincentz M (2007) Sugarcane, a tropical crop with a highly complex genome. In: Morot-Gaudry JF, Lea P and Briat JF (eds) Functional plant genomics, Science Publishers, Enfield p 481–499Google Scholar
  21. Hogarth DM, Ryan CC, Taylor PWJ (1993) Quantitative inheritance of rust resistance in sugarcane. Field Crop Res 34:187–193CrossRefGoogle Scholar
  22. Hoy J (2005) Impact of rust on LCP 85-384. Sugar Bull 84:9Google Scholar
  23. Hoy J, Grisham MCH (2000) The rust outbreak of 2000: what’s going on! Sugar Bull 78:25Google Scholar
  24. Hoy JW, Hollier CA (2009) Effect of brown rust on yield of sugarcane in Louisiana. Plant Dis 93:1171–1174CrossRefGoogle Scholar
  25. Jannoo N, Grivet L, Dookun A, D’Hont A, Glaszmann JC (1999) Linkage disequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060CrossRefGoogle Scholar
  26. Johnson RM, Grisham MP, Richard EP (2007) Relationship between sugarcane rust severity and soil properties in Louisiana. Phytopathology 97:748–755PubMedCrossRefGoogle Scholar
  27. Kelly PL, Reeder R, Tafesse A (2009) First confirmed report of sugarcane common rust Puccinia melanocephala in Ethiopia. Plant Pathol 58:1172CrossRefGoogle Scholar
  28. Le Cunff L, Garsmeur O, Raboin LM, Pauquet J, Telismart H, Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann JC, D’Hont A (2008) Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n ~ 12x ~ 115). Genetics 180:649–660PubMedCrossRefGoogle Scholar
  29. Liu L-J (1980a) Maturity resistance, a useful phenomenon for integrated control of sugarcane rust. Sugarcane Pathol New 25:11–13Google Scholar
  30. Liu L-J (1980b) Observations and considerations on sugarcane rust incidence, varietal reaction and possible occurrence of physiologic races. Sugarcane Pathol New 25:5–10Google Scholar
  31. McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, Croft BJ, Jordan DR, Manners JM (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400PubMedCrossRefGoogle Scholar
  32. Ming R, Liu S-C, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084PubMedCrossRefGoogle Scholar
  33. Patel M, Kamat M, Padhye Y (1950) A new record of Puccinia on sugar-cane in Bombay. Current Sci India 19:121–122Google Scholar
  34. Pauquet J, Raboin L-M, Costet L, Butterfield M, Glaszmann J-C, D’Hont A (2007) Genome-wide linkage disequilibrium analysis and association study for smut resistance in the highly polyploid genome of sugarcane. Plant & Animal Genomes XV Conference, San Diego, CA 13–17 Jan 2007Google Scholar
  35. Pillay L, Mc Farlane SA, Rutherford RS (2005) A Preliminary report on genetic diversity in populations of sugarcane rust in Kwazulu-Natal. Proc South Afr Sug Technol Assess 79:132–136Google Scholar
  36. Purdy LH, Liu L-J, Dean JL (1983) Sugarcane rust, a newly important disease. Plant Dis 67:1292–1296CrossRefGoogle Scholar
  37. Raboin L, Oliveira K, Le Cunff L, Telismart H, Roques D, Butterfield M, Hoarau JY, D‘Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391PubMedCrossRefGoogle Scholar
  38. Raboin L-M, Pauquet J, Butterfield M, D’Hont A, Glaszmann J-C (2008) Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane. Theor Appl Genet 116:701–714PubMedCrossRefGoogle Scholar
  39. Raid RN (1989) Physiological specialization in sugarcane rust (Puccinia melanocephala) in Florida. Plant Dis 73:183CrossRefGoogle Scholar
  40. Ramdoyal K, Sullivan S, Lim Shin Chong LCY, Badaloo G, Saumtally S, Domaingue R (2000) The genetics of rust resistance in sugar cane seedling production. Theor Appl Genet 100:557–563Google Scholar
  41. Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys MA, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genomics 269:406–419PubMedCrossRefGoogle Scholar
  42. SAS Institute (2008) SAS Online Doc® 9.2. SAS Institute Inc., Cary, NC, USAGoogle Scholar
  43. Shine JM, Comstock JC, Dean JL (2005) Comparison of five isolates of sugarcane brown rust and differential reaction on six sugarcane clones. Sugar Cane 23:24–29Google Scholar
  44. Srinivasan KV, Muthaiyan MC (1965) A note on physiologic races in Puccinia erianthi Padw. and Khan affecting sugar-cane varieties. International Society of Sugar Cane Technologists Congress, Puerto Rico, p 1126–1128Google Scholar
  45. Tai PYP, Miller JD, Dean JL (1981) Inheritance of resistance to rust in sugarcane. Field Crop Res 4:261–268CrossRefGoogle Scholar
  46. Taylor P (1992) Evidence for the existence of a single race of common rust caused by Puccinia melanocephala, in Australian sugar cane cultivars. Aust J Agric Res 43:443–450CrossRefGoogle Scholar
  47. Tew T (1987) New Varieties. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 559–594Google Scholar
  48. Wei X, Jackson P, McIntyre C, Aitken K, Croft B (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 114:155–164PubMedCrossRefGoogle Scholar
  49. Wei X, Jackson PA, Hermann S, Kilian A, Heller-Uszynska K, Deomano E (2010) Simultaneously accounting for population structure, genotype by environment interaction, and spatial variation in marker-trait associations in sugarcane. Genome 53:973–981PubMedCrossRefGoogle Scholar
  50. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • L. Costet
    • 1
  • L. Le Cunff
    • 2
  • S. Royaert
    • 1
  • L.-M. Raboin
    • 1
  • C. Hervouet
    • 2
  • L. Toubi
    • 3
  • H. Telismart
    • 1
  • O. Garsmeur
    • 2
  • Y. Rousselle
    • 1
  • J. Pauquet
    • 2
  • S. Nibouche
    • 1
  • J.-C. Glaszmann
    • 2
  • J.-Y. Hoarau
    • 3
  • A. D’Hont
    • 2
    Email author
  1. 1.Cirad, UMR PVBMTLa RéunionFrance
  2. 2.Cirad, UMR AGAPMontpellierFrance
  3. 3.Cirad, UMR AGAPGuadeloupeFrance

Personalised recommendations