Advertisement

Theoretical and Applied Genetics

, Volume 125, Issue 1, pp 47–56 | Cite as

Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets

  • Hiroyuki Fukuoka
  • Koji Miyatake
  • Tsukasa Nunome
  • Satomi Negoro
  • Kenta Shirasawa
  • Sachiko Isobe
  • Erika Asamizu
  • Hirotaka Yamaguchi
  • Akio Ohyama
Original Paper

Abstract

We constructed an integrated DNA marker linkage map of eggplant (Solanum melongena L.) using DNA marker segregation data sets obtained from two independent intraspecific F2 populations. The linkage map consisted of 12 linkage groups and encompassed 1,285.5 cM in total. We mapped 952 DNA markers, including 313 genomic SSR markers developed by random sequencing of simple sequence repeat (SSR)-enriched genomic libraries, and 623 single-nucleotide polymorphisms (SNP) and insertion/deletion polymorphisms (InDels) found in eggplant-expressed sequence tags (ESTs) and related genomic sequences [introns and untranslated regions (UTRs)]. Because of their co-dominant inheritance and their highly polymorphic and multi-allelic nature, the SSR markers may be more versatile than the SNP and InDel markers for map-based genetic analysis of any traits of interest using segregating populations derived from any intraspecific crosses of practical breeding materials. However, we found that the distribution of microsatellites in the genome was biased to some extent, and therefore a considerable part of the eggplant genome was first detected when gene-derived SNP and InDel markers were mapped. Of the 623 SNP and InDel markers mapped onto the eggplant integrated map, 469 were derived from eggplant unigenes contained within Solanum orthologous (SOL) gene sets (i.e., sets of orthologous unigenes from eggplant, tomato, and potato). Out of the 469 markers, 326 could also be mapped onto the tomato map. These common markers will be informative landmarks for the transfer of tomato’s more saturated genomic information to eggplant and will also provide comparative information on the genome organization of the two solanaceous species. The data are available from the DNA marker database of vegetables, VegMarks (http://vegmarks.nivot.affrc.go.jp).

Keywords

Simple Sequence Repeat Marker InDel Marker Tomato Genome Genomic Simple Sequence Repeat Marker COSII Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Prof. S. Tanksley (Cornell University) for kindly providing plants of the tomato mapping population and genotyping data for their markers, and Dr. T. Saito (NARO Institute of Vegetable and Tea Science, NIVTS) for providing the eggplant materials. We are also grateful to Ms. Y. Kitamura (NIVTS) for her skillful technical assistance. This work was supported by grants-in-aid from the Ministry of Agriculture, Forestry, and Fisheries of Japan (‘Genomics for Agricultural Innovation’, DD-4010/SGE-1001; ‘Development of mitigation and adaptation techniques to global warming in the sectors of agriculture, forestry, and fisheries’, C-3-1010).

Supplementary material

122_2012_1815_MOESM1_ESM.xls (3.1 mb)
Supplementary material 1 (XLS 3,211 kb)
122_2012_1815_MOESM2_ESM.doc (66 kb)
Supplementary material 2 (DOC 66 kb)

References

  1. Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, Suda K, Kurabayashi A, Suzuki T, Tsugane T, Watanabe M, Ooga K, Torii M, Narita T, Shin-i T, Kohara Y, Yamamoto N, Takahashi H, Watanabe Y, Egusa M, Kodama M, Ichinose Y, Kikuchi M, Fukushima S, Okabe A, Arie T, Sato Y, Yazawa K, Satoh S, Omura T, Ezura H, Shibata D (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 11:210PubMedCrossRefGoogle Scholar
  2. Barchi L, Lanteri S, Portis E, Stagel A, Vale G, Toppino L, Rotino GL (2010) Segregation distortion and linkage analysis in eggplant (Solanum melongena L.). Genome 53:805–815PubMedCrossRefGoogle Scholar
  3. Barchi L, Lanteri S, Portis E, Acquadro A, Vale G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304PubMedCrossRefGoogle Scholar
  4. Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLp maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103PubMedGoogle Scholar
  5. Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562PubMedCrossRefGoogle Scholar
  6. D’Arcy WG (1991) The Solanaceae since 1976 with a review of its biogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III. Royal Botanic Gardens/Kew, London, pp 75–138Google Scholar
  7. Daunay MC, Lester RN (1988) The usefulness of taxonomy for Solanaceae breeders, with special reference to the genus Solanum and to Solanum melongena L. (eggplant). Capsicum Newslett 7:70–79Google Scholar
  8. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711PubMedGoogle Scholar
  9. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  10. Flinn B, Rothwell C, Griffiths R, Lague M, DeKoeyer D, Sardana R, Audy P, Goyer C, Li XQ, Wang-Pruski G, Regan S (2005) Potato expressed sequence tag generation and analysis using standard and unique cDNA libraries. Plant Mol Biol 59:407–433PubMedCrossRefGoogle Scholar
  11. Fregene M, Castelblanco W (2006) SSCP-SNP-based conserved ortholog set (COS) markers for comparative genomics in cassava (Manihot esculenta Crantz). Plant Mol Biol Rep 24:229–236CrossRefGoogle Scholar
  12. Fukuoka H, Miyatake K, Negoro S, Nunome T, Ohyama A, Yamaguchi H (2008) Development of a routine procedure for single nucleotide polymorphism marker design based on the Tm-shift genotyping method. Breed Sci 58:461–464CrossRefGoogle Scholar
  13. Fukuoka H, Yamaguchi H, Nunome T, Negoro S, Miyatake K, Ohyama A (2010) Accumulation, functional annotation, and comparative analysis of expressed sequence tags in eggplant (Solanum melongena L.), the third pole of the genus Solanum species after tomato and potato. Gene 450:76–84PubMedCrossRefGoogle Scholar
  14. Krutovsky K, Elsik C, Matvienko M, Kozik A, Neale D (2006) Conserved ortholog sets in forest trees. Tree Genet Genomes 3:61–70CrossRefGoogle Scholar
  15. Kukita Y, Hayashi K (2002) Multicolor post-PCR labeling of DNA fragments with fluorescent ddNTPs. Biotechniques 33:502–506PubMedGoogle Scholar
  16. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  17. Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189PubMedCrossRefGoogle Scholar
  18. Lin KHR, Weng CC, Lo HF, Chen JT (2004) Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Sci 167:355–365CrossRefGoogle Scholar
  19. Liu N, Zhou BL, Zhao X, Lu B, Li YX, Hao J (2009) Grafting eggplant onto tomato rootstock to suppress Verticillium dahliae infection: the effect of root exudates. HortScience 44:2058–2062Google Scholar
  20. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  21. Nunome T, Ishiguro K, Yoshida T, Hirai M (2001) Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breed Sci 51:19–26CrossRefGoogle Scholar
  22. Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153PubMedCrossRefGoogle Scholar
  23. Ohyama A, Asamizu E, Negoro S, Miyatake K, Yamaguchi H, Tabata S, Fukuoka H (2009) Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol Breed 23:685–691CrossRefGoogle Scholar
  24. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448PubMedCrossRefGoogle Scholar
  25. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  26. Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J (2001) The TIGR gene indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res 29:159–164PubMedCrossRefGoogle Scholar
  27. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  28. Saito T, Yoshida T, Monma S, Matsunaga H, Sato T, Saito A, Yamada T (2009) Development of the parthenocarpic eggplant cultivar ‘Anominori’. Jpn Agric Res Q 43(2):123–127CrossRefGoogle Scholar
  29. Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121:731–739PubMedCrossRefGoogle Scholar
  30. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  31. Wang J, Chuang K, Ahluwalia M, Patel S, Umblas N, Mirel D, Higuchi R, Germer S (2005) High-throughput SNP genotyping by single-tube PCR with Tm-shift primers. Biotechniques 39:885–893PubMedCrossRefGoogle Scholar
  32. Wu F, Tanksley SD (2010) Chromosomal evolution in the plant family Solanaceae. BMC Genomics 11:182PubMedCrossRefGoogle Scholar
  33. Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420PubMedCrossRefGoogle Scholar
  34. Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009a) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293PubMedCrossRefGoogle Scholar
  35. Wu F, Eannetta NT, Xu Y, Tanksley SD (2009b) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935PubMedCrossRefGoogle Scholar
  36. Wu F, Eannetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827PubMedCrossRefGoogle Scholar
  37. Yamamoto T, Nagasaki H, Yonemaru J, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hiroyuki Fukuoka
    • 1
  • Koji Miyatake
    • 1
  • Tsukasa Nunome
    • 1
  • Satomi Negoro
    • 1
  • Kenta Shirasawa
    • 2
  • Sachiko Isobe
    • 2
  • Erika Asamizu
    • 2
    • 3
  • Hirotaka Yamaguchi
    • 1
  • Akio Ohyama
    • 1
  1. 1.NARO Institute of Vegetable and Tea Science (NIVTS), National Agriculture and Food Research OrganizationTsuJapan
  2. 2.Kazusa DNA Research InstituteKisarazuJapan
  3. 3.School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations