Theoretical and Applied Genetics

, Volume 124, Issue 8, pp 1513–1520 | Cite as

Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.)

  • Eliene Mariano Bonifácio
  • Artur Fonsêca
  • Cícero Almeida
  • Karla G. B. dos Santos
  • Andrea Pedrosa-Harand
Original Paper


The common bean (Phaseolus vulgaris) and lima bean (P. lunatus) are among the most important legumes in terms of direct human consumption. The present work establishes a comparative cytogenetic map of P. lunatus, using previously mapped markers from P. vulgaris, in association with analyses of heterochromatin distribution using the fluorochromes chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI) and localization of the 5S and 45S ribosomal DNA (rDNA) probes. Seven BACs selected from different common bean chromosomes demonstrated a repetitive pericentromeric pattern corresponding to the heterochromatic regions revealed by CMA/DAPI and could not be mapped. The subtelomeric repetitive pattern observed for BAC 63H6 in most of the chromosome ends of common bean was not detected in lima bean, indicating lack of conservation of this subtelomeric repeat. All chromosomes could be identified and 16 single-copy clones were mapped. These results showed a significant conservation of synteny between species, although change in centromere position suggested the occurrence of pericentric inversions on chromosomes 2, 9 and 10. The low number of structural rearrangements reflects the karyotypic stability of the genus.


Bacterial Artificial Chromosome Common Bean Chromosome Pair Lima Bean Pericentric Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Heloisa Torres (EMBRAPA Arroz e Feijão) for the seeds, Dr. Paul Gepts (University of California) for the BAC clones and Valérie Geffroy (Université Paris Sud) for the B61 bacteriophage. C. A. was supported by a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. A. F. and K. G. B. dos S. were supported by grants from Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Brazil. M. M. was supported by the Gregor Mendel Institute of Molecular Plant Biology (GMI), Austria. The work was supported by CNPq, Brazil.


  1. Adam-Blondon A, Sévignac M, Dron M, Bannerot H (1994) A genetic map of common bean to localize specific resistance genes against anthracnose. Genome 37:915–924PubMedCrossRefGoogle Scholar
  2. Almeida C, Pedrosa-Harand A (2010) Contrasting rDNA evolution in lima bean (Phaseolus lunatus L.) and common bean (P. vulgaris L., Fabaceae). Cytogenet Genome Res 132:212–217PubMedCrossRefGoogle Scholar
  3. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  4. Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.): model food legumes. Plant Soil 252:55–128CrossRefGoogle Scholar
  5. Cabral JS, Felix LP, Guerra M (2006) Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet Mol Biol 29:659–664CrossRefGoogle Scholar
  6. Carvalho R, Filho WSS, Brasileiro-Vidal AC, Guerra M (2005) The relationship among lemons, limes and citron: a chromosomal comparison. Cytogenetic Genome Res 109:276–282CrossRefGoogle Scholar
  7. Chacón SMI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444CrossRefGoogle Scholar
  8. David P, Chen NWG, Pedrosa-Harand A et al (2009) A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol 151:1048–1065PubMedCrossRefGoogle Scholar
  9. Deumling B, Greilhuber J (1982) Characterization of heterochromatin in different species of the Scilla siberica group (Liliaceae) by in situ hybridization of satellite DNAs and fluorochrome banding. Chromosoma 84:535–555CrossRefGoogle Scholar
  10. Doganlar S, Frary A, Daunay M-C, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711PubMedGoogle Scholar
  11. Dubcovsky J, Dvorak J (1995) Ribossomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140:1367–1377PubMedGoogle Scholar
  12. Ferrier-Cana E, Geffroy V, Macadré C et al (2003) Characterization of expressed NBS-LRR resistance gene candidates from common bean. Theor Appl Genet 106:251–261PubMedGoogle Scholar
  13. Fonsêca A, Ferreira J, Santos TRB et al (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosome Res 8:487–502CrossRefGoogle Scholar
  14. Freyre R, Skroch PW, Geffroy V et al (1998) Towards an integrated linkage map of common bean 4: development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856CrossRefGoogle Scholar
  15. Geffroy V, Sévignac M, Billiant P, Dron M, Langin T (2008) Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes. Theor Appl Genet 116:407–415PubMedCrossRefGoogle Scholar
  16. Geffroy V, Macadré C, David P et al (2009) Molecular analysis of a large subtelomeric NBS-LRR family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics 181:405–419PubMedCrossRefGoogle Scholar
  17. Han Y, Zhang Z, Liu C et al (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci USA 106:14937–14941PubMedCrossRefGoogle Scholar
  18. Heslop-Harrison JS, Harrison GE, Leitch IJ (1992) Reprobing of DNA:DNA in situ hybridization preparations. Trends Genet 8:372–373PubMedGoogle Scholar
  19. Hizume M, Ohgiku A, Tanaka A (1989) Chromosome banding in the genus Pinus II. Interespecific variation on fluorescent banding patterns in P. densiflora e P. thunbergii. Bot Mag 102:25–36CrossRefGoogle Scholar
  20. Iovene M, Wielgus SM, Simom PH, Buell CR, Jiang J (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317PubMedCrossRefGoogle Scholar
  21. Iovene M, Cavagnaro PF, Senalik D, Buell CR, Jiang J, Simon PW (2011) Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Res 19:493–506PubMedCrossRefGoogle Scholar
  22. Kami J, Poncet V, Geffroy V, Gepts P (2006) Development of four phylogenetically-arrayed BAC libraries and sequence of the APA locus in Phaseolus vulgaris. Theor Appl Genet 112:987–998PubMedCrossRefGoogle Scholar
  23. Koumbaris GL, Bass HW (2003) A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propiquum L.) BAC clones. Plant J 35:647–659PubMedCrossRefGoogle Scholar
  24. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229PubMedCrossRefGoogle Scholar
  25. Ma L, Vu GTH, Schubert V et al (2010) Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Res 18:841–850PubMedCrossRefGoogle Scholar
  26. Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570PubMedCrossRefGoogle Scholar
  27. Men AE, Meksem K, Kassem MA et al (2001) A bacterial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector. MPMI 14:422–425PubMedCrossRefGoogle Scholar
  28. Mercado-Ruaro P, Delgado-Salinas A (1996) Karyological studies in several Mexican species of Phaseolus L. and Vigna savi (Phaseolinae, Fabaceae). In: Pickergill B, Lock JM (eds) Advances in legumes systematics 8: legumes of economic importance. Royal Botanic Gardens, Kew, pp 83–87Google Scholar
  29. Mercado-Ruaro P, Delgado-Salinas A (1998) Karyotypic studies on species of Phaseolus (Fabaceae: Phaseolinae). Am J Bot 85:1–9PubMedCrossRefGoogle Scholar
  30. Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S–25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233PubMedGoogle Scholar
  31. Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated linkage map of common bean: II development of an RFLP-based linkage map. Theor Appl Genet 85:513–520CrossRefGoogle Scholar
  32. Oliveira AP, Alves EU, Alves AU et al (2004) Produção de feijão-fava em função do uso de doses de fósforo em um Neossolo Regolítico. Hortic Bras 22:543–546CrossRefGoogle Scholar
  33. Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672PubMedGoogle Scholar
  34. Pedrosa A, Vallejos CE, Bachmair A, Schweizer D (2003) Integration of common bean (Phaseolus vulgaris L.) linkage and chromosomal maps. Theor Appl Genet 106:205–212PubMedGoogle Scholar
  35. Pedrosa-Harand A, Porch T, Gepts P (2008) Standard nomenclature for common bean chromosomes and linkage groups. Annu Rep Bean Improv Coop 51:106–107Google Scholar
  36. Pedrosa-Harand A, Kami J, Gepts P, Geffroy V, Schweizer D (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalised small-genome plant species. Chromosome Res 17:405–417PubMedCrossRefGoogle Scholar
  37. Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA 101:14818–14823PubMedCrossRefGoogle Scholar
  38. Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207–2016PubMedCrossRefGoogle Scholar
  39. Serrano–Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG, Sánchez MI (2010) Gene pools in wild Lima bean (Phaseolus lunatus L.) from the Americas: evidences for an Andean origin and past migrations. Mol Phylogenet Evol 54:76–87PubMedCrossRefGoogle Scholar
  40. Silva SC, Martins MIG, Santos RC et al (2010) Karyological features and banding patterns in Arachis species belonging to the Heteranthae section. Plant Syst Evol 285:201–207CrossRefGoogle Scholar
  41. Souza MGC, Benko-Iseppon AM (2004) Cytogenetics and chromosome banding patterns in Caesalpinioideae and Papilionioideae species of Pará, Amazonas, Brazil. Bot J Linn Soc 144:181–191CrossRefGoogle Scholar
  42. Tang X, Szinay D, Lang C et al (2008) Cross-species bacterial artificial chromosome–fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 180:1319–1328PubMedCrossRefGoogle Scholar
  43. Topp CN, Okagaki RJ, Melo JR, Kynast RG, Phillips RL, Dawe RK (2009) Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res 124:228–238PubMedCrossRefGoogle Scholar
  44. Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740PubMedGoogle Scholar
  45. Wanzenböck E-M, Schöfer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Plant J 11:1007–1016PubMedCrossRefGoogle Scholar
  46. Wu C–C, Nimmakayala P, Santos FA et al (2004) Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theor Appl Genet 109:1041–1050PubMedCrossRefGoogle Scholar
  47. Yang J, Wang Q, Deng D et al (2003) Construction and characterization of a bacterial artificial chromosome library of maize inbred line 77Ht2. Plant Mol Biol Rep 21:159–169CrossRefGoogle Scholar
  48. Zheng J, Nakata M, Uchiyama H, Morikawa H, Tanaka R (1991) Giemsa C-banding patterns in several species of Phaseolus L. and Vigna savi, Fabaceae. Cytologia 56:459–466CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Eliene Mariano Bonifácio
    • 1
  • Artur Fonsêca
    • 1
  • Cícero Almeida
    • 1
    • 2
  • Karla G. B. dos Santos
    • 1
  • Andrea Pedrosa-Harand
    • 1
  1. 1.Laboratory of Plant Cytogenetics, Department of BotanyFederal University of PernambucoRecifeBrazil
  2. 2.Laboratory of Genetics Resources, Campus ArapiracaFederal University of AlagoasArapiracaBrazil

Personalised recommendations