Theoretical and Applied Genetics

, Volume 124, Issue 5, pp 893–902 | Cite as

Mapping and characterization of seed dormancy QTLs using chromosome segment substitution lines in rice

  • Salem Marzougui
  • Kazuhiko Sugimoto
  • Utako Yamanouchi
  • Masaki Shimono
  • Tomoki Hoshino
  • Kiyosumi Hori
  • Masatomo Kobayashi
  • Kanako Ishiyama
  • Masahiro Yano
Original Paper

Abstract

Seed dormancy—the temporary failure of a viable seed to germinate under favorable conditions—is a complex characteristic influenced by many genes and environmental factors. To detect the genetic factors associated with seed dormancy in rice, we conducted a QTL analysis using chromosome segment substitution lines (CSSLs) derived from a cross between Nona Bokra (strong dormancy) and Koshihikari (weak dormancy). Comparison of the levels of seed dormancy of the CSSLs and their recurrent parent Koshihikari revealed that two chromosomal regions—on the short arms of chromosomes 1 and 6—were involved in the variation in seed dormancy. Further genetic analyses using an F2 population derived from crosses between the CSSLs and Koshihikari confirmed the allelic differences and the chromosomal locations of three putative QTLs: Sdr6 on chromosome 1 and Sdr9 and Sdr10 on chromosome 6. The Nona Bokra alleles of the three QTLs were associated with decreased germination rate. We discuss the physiological features of the CSSLs and speculate on the possible mechanisms of dormancy in light of the newly detected QTLs.

Notes

Acknowledgments

We thank the Technical Support Section of NIAS for managing the rice field, and we thank T. Ando and I. Kono of the STAFF Institute for genotyping. We also thank the Rice Genome Resource Center (http://www.rgrc.dna.affrc.go.jp) for providing the CSSL seeds. This work was supported by grants from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Integrated Research Project for Plant, Insect, and Animal using Genome Technology QT-1005, Genomics for Agricultural Innovation NVR-0001, and Genomics for Agricultural Innovation IPG0010).

References

  1. Allen PS, Benech-Arnold RL, Batlla D, Bradford KJ (2007) Modeling of seed dormancy. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell, Oxford, pp 72–112CrossRefGoogle Scholar
  2. Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047PubMedCrossRefGoogle Scholar
  3. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066PubMedCrossRefGoogle Scholar
  4. Bewley JD, Black M (eds) (1982) Physiology and biochemistry of seeds in relation to germination, vol 2. Springer, Heidelberg, pp 61–81Google Scholar
  5. Cai W, Morishima H (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100:840–846CrossRefGoogle Scholar
  6. Dong Y, Tsuzuki E, Kamiunten H, Terao H, Lin D, Matsuo M, Zheng Y (2003) Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crops Res 81:133–139CrossRefGoogle Scholar
  7. Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of Indica rice cultivar ‘Kasalath’ in a genetic background of Japonica elite cultivar ‘Koshihikari. Breed Sci 55:65–73CrossRefGoogle Scholar
  8. Fukuoka S, Nonoue Y, Yano M (2010) Germplasm enhancement by developing advanced plant materials from diverse rice accessions. Breed Sci 60:509–517CrossRefGoogle Scholar
  9. Gianinetti A, Vernieri P (2007) On the role of abscisic acid in seed dormancy of red rice. J Exp Bot 58:3449–3462PubMedCrossRefGoogle Scholar
  10. Gu XY, Kianian SF, Foley ME (2004) Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics 166:1503–1516PubMedCrossRefGoogle Scholar
  11. Gu XY, Kianian SF, Foley ME (2006) Isolation of three dormancy QTLs as Mendelian factors in rice. Heredity 96:93–99PubMedGoogle Scholar
  12. Gu XY, Liu T, Feng J, Suttle JC, Gibbons J (2010) The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol 73:97–104PubMedCrossRefGoogle Scholar
  13. Gu XY, Foley ME, Horvath DP, Anderson JV, Feng J, Zhang L, Mowry CR, Ye H, Suttle JC, Kadowaki K, Chen Z (2011) Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates ABA and flavonoid synthesis in weedy red rice. Genetics (Epub ahead of print)Google Scholar
  14. Guo L, Zhu L, Xu Y, Zeng D, Wu P, Qian Q (2004) QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica 140:155–162CrossRefGoogle Scholar
  15. IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  16. Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2000) A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol 123:553–562PubMedCrossRefGoogle Scholar
  17. Koornneef M, Alonso-Blanco C, Bentsink L, Blankenstijn-De Vries H, Debeaujon I (2000) The genetics of seed dormancy in Arabidopsis thaliana. In: Viemont JD, Crabbe J (eds) Dormancy in plants. CABI Publishing, Wallingford, pp 365–373CrossRefGoogle Scholar
  18. Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A (2002) Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.). Breed Sci 52:319–325CrossRefGoogle Scholar
  19. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  20. Lee SJ, Oh CS, Suh JP, McCouch SR, Ahn SN (2005) Identification of QTLs for domestication-related and agronomic traits in an Oryza sativa × O. rufipogon BC1F7 population. Plant Breed 124:209–219CrossRefGoogle Scholar
  21. Li C, Zhou A, Sang T (2006) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–193PubMedCrossRefGoogle Scholar
  22. Li W, Xu L, Bai X, Xing Y (2011) Quantitative trait loci for seed dormancy in rice. Euphytica 178:427–435CrossRefGoogle Scholar
  23. Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003CrossRefGoogle Scholar
  24. Lu B, Xie K, Yang C, Wang S, Liu X, Zhang L, Jiang L, Wan J (2010) Mapping two major effect grain dormancy QTL in rice. Mol Breed. doi:10.1007/s11032-010-9495-0
  25. Miura K, Lin Y, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet 104:981–986PubMedCrossRefGoogle Scholar
  26. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Ann Rev Plant Biol 56:165–185CrossRefGoogle Scholar
  27. RAP (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033Google Scholar
  28. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48PubMedCrossRefGoogle Scholar
  29. Sugimoto K, Marzougi S, Yano M (2009) Genetic control of seed dormancy in rice. In: Institute of Radiation Breeding, NIAS (ed) Gamma field symposia, vol 48. Ohomiya, Ibaraki Japan, pp 53–59Google Scholar
  30. Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107:5792–5797PubMedCrossRefGoogle Scholar
  31. Takai T, Nonoue Y, Yamamoto S, Yamanouchi U, Matsubara K, Liang ZW, Lin H, Ono N, Uga Y, Yano M (2007) Development of chromosome segment substitution lines derived from backcross between Indica donor rice cultivar ‘Nona Bokra’ and Japonica recipient cultivar ‘Koshihikari’. Breed Sci 57:257–261CrossRefGoogle Scholar
  32. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493PubMedCrossRefGoogle Scholar
  33. Uga Y, Nonoue Y, Liang ZW, Lin HX, Yamamoto S, Yamanouchi U, Yano M (2007) Accumulation of additive effects generates a strong photoperiod sensitivity in the extremely late-heading rice cultivar ‘Nona Bokra’. Theor Appl Genet 114:1457–1466PubMedCrossRefGoogle Scholar
  34. Wan J, Nakazaki T, Kawaura K, Ikehashi H (1997) Identification of marker loci for seed dormancy in rice (Oryza sativa L.). Crop Sci 37:1759–1763Google Scholar
  35. Wan JM, Cao YJ, Wang CM, Ikehashi H (2005) Quantitative trait loci associated with seed dormancy in rice. Crop Sci 45:712–716CrossRefGoogle Scholar
  36. Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
  37. Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50:644–651PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Salem Marzougui
    • 1
    • 2
  • Kazuhiko Sugimoto
    • 2
  • Utako Yamanouchi
    • 2
  • Masaki Shimono
    • 2
  • Tomoki Hoshino
    • 2
  • Kiyosumi Hori
    • 2
  • Masatomo Kobayashi
    • 3
  • Kanako Ishiyama
    • 3
  • Masahiro Yano
    • 1
    • 2
  1. 1.University of TsukubaTsukubaJapan
  2. 2.National Institute of Agrobiological SciencesTsukubaJapan
  3. 3.BioResources Center, RIKENTsukubaJapan

Personalised recommendations