Theoretical and Applied Genetics

, Volume 124, Issue 4, pp 685–695 | Cite as

Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava

  • Morag E. Ferguson
  • Sarah J. Hearne
  • Timothy J. Close
  • Steve Wanamaker
  • William A. Moskal
  • Christopher D. Town
  • Joe de Young
  • Pradeep Reddy Marri
  • Ismail Yusuf Rabbi
  • Etienne P. de Villiers
Original Paper

Abstract

The availability of genomic resources can facilitate progress in plant breeding through the application of advanced molecular technologies for crop improvement. This is particularly important in the case of less researched crops such as cassava, a staple and food security crop for more than 800 million people. Here, expressed sequence tags (ESTs) were generated from five drought stressed and well-watered cassava varieties. Two cDNA libraries were developed: one from root tissue (CASR), the other from leaf, stem and stem meristem tissue (CASL). Sequencing generated 706 contigs and 3,430 singletons. These sequences were combined with those from two other EST sequencing initiatives and filtered based on the sequence quality. Quality sequences were aligned using CAP3 and embedded in a Windows browser called HarvEST:Cassava which is made available. HarvEST:Cassava consists of a Unigene set of 22,903 quality sequences. A total of 2,954 putative SNPs were identified. Of these 1,536 SNPs from 1,170 contigs and 53 cassava genotypes were selected for SNP validation using Illumina’s GoldenGate assay. As a result 1,190 SNPs were validated technically and biologically. The location of validated SNPs on scaffolds of the cassava genome sequence (v.4.1) is provided. A diversity assessment of 53 cassava varieties reveals some sub-structure based on the geographical origin, greater diversity in the Americas as opposed to Africa, and similar levels of diversity in West Africa and southern, eastern and central Africa. The resources presented allow for improved genetic dissection of economically important traits and the application of modern genomics-based approaches to cassava breeding and conservation.

Supplementary material

122_2011_1739_MOESM1_ESM.xlsx (1.4 mb)
Online Resource 1: GO annotation and GO Slim summary of ESTs from CASL and CASR libraries (XLSX 1.39 mb)
122_2011_1739_MOESM2_ESM.xlsx (10.4 mb)
Online Resource 2: UniProt and Arabidopsis database, GO annotations and GO Slim summary of HarvEST: Cassava unigene set (XLSX 10.4 mb)
122_2011_1739_MOESM3_ESM.xlsx (813 kb)
Online Resource 3: Putative SNPs including column of 1,536 SNPs selected for Illumina OPA (XLSX 813 kb)
122_2011_1739_MOESM4_ESM.xlsx (96 kb)
Online Resource 4: Minor allele frequency of validated SNPs (XLSX 95.6 kb)
122_2011_1739_MOESM5_ESM.xlsx (268 kb)
Online Resource 5: Location of 1,430 putative SNPs on scaffolds of the Cassava genome v.4.1. (XLSX 267 kb)

References

  1. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517PubMedCrossRefGoogle Scholar
  2. Anderson JV, Delseny M, Fregene MA, Jorge V, Mba C, Lopez C, Restrepo S, Soto M, Piegu B, Verdier V, Cooke R, Tohme J, Horvath DP (2004) An EST resource for cassava and other species of Euphorbiaceae. Plant Mol Biol 56:527–539PubMedCrossRefGoogle Scholar
  3. Anithakumari A, Tang J, van Eck H, Visser R, Leunissen J, Vosman B, van der Linden C (2010) A pipeline for high throughput detection and mapping of SNPs from EST databases. Mol Breed 26:65–75PubMedCrossRefGoogle Scholar
  4. Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Gustafson JP, Langridge P, Somers DJ (eds) Plant Genomics. Methods in Molecular Biology. Humana Press, New York, pp 19–39. http://dx.doi.org/10.1007/978-1-59745-427-8_2 CrossRefGoogle Scholar
  5. Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91PubMedCrossRefGoogle Scholar
  6. Brumfield R, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256CrossRefGoogle Scholar
  7. Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo MC, Dubcovsky J (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 23:23–33CrossRefGoogle Scholar
  8. Chavarriaga-Aguirre PP, Maya MM, Bonierbale M, Kresovich S, Fregene MA, Tohme J, Kochert G (1998) Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor Appl Genet 97:493–501CrossRefGoogle Scholar
  9. Chavarriaga-Aguirre P, Maya MM, Tohme J, Duque M, Iglesias C, Bonierbale M, Kresovich S, Kochert G (1999) Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Mol Breed 5:263–273. http://dx.doi.org/10.1023/A:1009627231450 CrossRefGoogle Scholar
  10. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207PubMedCrossRefGoogle Scholar
  11. Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968PubMedCrossRefGoogle Scholar
  12. Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582PubMedCrossRefGoogle Scholar
  13. Dixon AGO, Bandyopadhyay R, Coyne D, Ferguson M, Ferris S, Hanna R, Hughes J, Ingelbrecht I, Legg J, Mahungu N, Manyong V, Mowbray D, Neuenschwander P, Whyte J, Hartmann P, Ortiz R (2003) Cassava: from poor farmer’s crop to pacesetter of African rural development. Chronica Hortic 43:8–15Google Scholar
  14. El Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501PubMedCrossRefGoogle Scholar
  15. Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Rosling H, Dixon AG, Dean R, Kresovich S (2003) Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Gene 107:1083–1093Google Scholar
  16. Garg K, Green P, Nickerson DA (1999) Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Res 9:1087–1092PubMedCrossRefGoogle Scholar
  17. Grivet L, Glaszmann J-C, Vincentz M, da Silva F, Arruda P (2002) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197PubMedGoogle Scholar
  18. Hyten D, Song Q, Choi IY, Yoon MS, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952PubMedCrossRefGoogle Scholar
  19. Jennings D, Iglesias C (2001) Breeding for crop improvement. In: Hillocks R, Thresh J (eds) Cassava biology, production and utilization. CAB International, Oxon, pp 149–166Google Scholar
  20. Jones W (1969) Manioc in Africa. Stanford University Press, StanfordGoogle Scholar
  21. Kawuki R, Ferguson M, Labuschagne M, Herselman L, Kim DJ (2009) Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breed 23:669–684Google Scholar
  22. Kunkeaw S, Tangphatsornruang S, Smith DR, Triwitayakorn K (2010) Genetic linkage map of cassava (Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breed 129:112–115CrossRefGoogle Scholar
  23. Lebot V (2009) Tropical root and tuber crops: cassava, sweet potato, yams and aroids. Crop Production Science in Horticulture 17. CABI, WallingfordGoogle Scholar
  24. Liu K, Muse S (2005) PowerMarker. Integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  25. Lokko Y, Anderson J, Rudd S, Raji A, Horvath D, Mikel M, Kim R, Liu L, Hernandez A, Dixon A, Ingelbrecht I (2007) Characterization of an 18, 166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618PubMedCrossRefGoogle Scholar
  26. Lopez C, Jorge V, Piegu B, Mba C, Cortes D, Restrepo S, Soto M, Laudie M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V (2004) A unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol 56:541–554PubMedCrossRefGoogle Scholar
  27. Lopez C, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431Google Scholar
  28. Luo M, Dang P, He G, Holbrook C, Bausher M, Lee R (2005) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:343–356CrossRefGoogle Scholar
  29. Mba REC, Stephensen P, Edwards K, Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31CrossRefGoogle Scholar
  30. McCarthy F, Wang N, Magee GB, Nanduri B, Lawrence M, Camon E, Barrell D, Hill D, Dolan M, Williams WP, Luthe D, Bridges S, Burgess S (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7:229PubMedCrossRefGoogle Scholar
  31. Nei M (1987) Molecular Evolutionary Genetics. Colombia University Press, New YorkGoogle Scholar
  32. Nelson R, Naylor RL, Jahn MM (2004) The role of genomics research in improvement of “orphan” crops. Crop Sci 44:1901–1904CrossRefGoogle Scholar
  33. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin.http://darwin.cirad.fr/darwin
  34. Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M (1999) Mining SNPs from EST databases. Genome Res 9:167–174PubMedGoogle Scholar
  35. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  36. Raji A, Anderson J, Kolade O, Ugwu C, Dixon A, Ingelbrecht I (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9:118PubMedCrossRefGoogle Scholar
  37. Rostoks N, Borevitz J, Hedley P, Russell J, Mudie S, Morris J, Cardle L, Marshall D, Waugh R (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54PubMedCrossRefGoogle Scholar
  38. Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66PubMedCrossRefGoogle Scholar
  39. Schmid KJ, Sörensen TR, Stracke R, Törjék O, Altmann T, Mitchell-Olds T, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257PubMedCrossRefGoogle Scholar
  40. Sraphet S, Boonchanawiwat A, Thanyasiriwat T, Boonseng O, Tabata S, Sasamoto S, Shirasawa K, Isobe S, Lightfoot D, Tangphatsornruang S, Triwitayakorn K (2011) SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 122:1161–1170PubMedCrossRefGoogle Scholar
  41. Sriroth K, Piyachomkwan K, Wanlapatit S, Oates C (2000) Cassava starch technology: the Thai experience. Starch 52:439–449CrossRefGoogle Scholar
  42. Syvänen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942PubMedCrossRefGoogle Scholar
  43. Tangphatsornruang S, Sraphet S, Singh R, Okogbenin E, Fregene M, Triwitayakorn K (2008) Development of polymorphic markers from expressed sequence tags of Manihot esculenta Crantz. Mol Ecol Resour 8:682–685PubMedCrossRefGoogle Scholar
  44. Tonujari NJ (2004) Cassava and the future of starch. Electron J Biotechnol 7:5–8Google Scholar
  45. Xia L, Peng K, Yang S, Wenzl P, Carmen de Vicente M, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Morag E. Ferguson
    • 1
  • Sarah J. Hearne
    • 1
    • 8
  • Timothy J. Close
    • 3
  • Steve Wanamaker
    • 3
  • William A. Moskal
    • 4
  • Christopher D. Town
    • 4
  • Joe de Young
    • 5
  • Pradeep Reddy Marri
    • 6
  • Ismail Yusuf Rabbi
    • 1
    • 2
  • Etienne P. de Villiers
    • 7
  1. 1.International Institute of Tropical Agriculture (IITA)NairobiKenya
  2. 2.International Institute of Tropical Agriculture (IITA)IbadanNigeria
  3. 3.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA
  4. 4.The J. Craig Venter InstituteRockvilleUSA
  5. 5.The Southern California Genotyping ConsortiumUniversity of California Los AngelesLos AngelesUSA
  6. 6.University of Arizona, B105 InstituteTucsonUSA
  7. 7.International Livestock Research Institute (ILRI)NairobiKenya
  8. 8.International Maize and Wheat Improvement Center (CIMMYT)MexicoMexico

Personalised recommendations