Advertisement

Theoretical and Applied Genetics

, Volume 124, Issue 3, pp 447–458 | Cite as

Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments

  • Derong Hao
  • Hao Cheng
  • Zhitong Yin
  • Shiyou Cui
  • Dan Zhang
  • Hui Wang
  • Deyue YuEmail author
Original Paper

Abstract

Genome-wide association analysis is a powerful approach to identify the causal genetic polymorphisms underlying complex traits. In this study, we evaluated a population of 191 soybean landraces in five environments to detect molecular markers associated with soybean yield and its components using 1,536 single-nucleotide polymorphisms (SNPs) and 209 haplotypes. The analysis revealed that abundant phenotypic and genetic diversity existed in the studied population. This soybean population could be divided into two subpopulations and no or weak relatedness was detected between pair-wise landraces. The level of intra-chromosomal linkage disequilibrium was about 500 kb. Genome-wide association analysis based on the unified mixed model identified 19 SNPs and 5 haplotypes associated with soybean yield and yield components in three or more environments. Nine markers were found co-associated with two or more traits. Many markers were located in or close to previously reported quantitative trait loci mapped by linkage analysis. The SNPs and haplotypes identified in this study will help to further understand the genetic basis of soybean yield and its components, and may facilitate future high-yield breeding by marker-assisted selection in soybean.

Keywords

Linkage Disequilibrium Minor Allele Frequency Seed Yield Yield Component Genetic Relatedness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (2010CB125906, 2009CB118400) and the National Natural Science Foundation of China (30800692, 31000718). Two anonymous reviewers are thanked for their highly valuable and very helpful comments.

Supplementary material

122_2011_1719_MOESM1_ESM.doc (9 mb)
Supplementary material 1 (DOC 9227 kb)

References

  1. Atwell S, Huang Y, Vilhjálmsson B, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A, Hu T (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631PubMedCrossRefGoogle Scholar
  2. Barrero RA, Bellgard M, Zhang X (2011) Diverse approaches to achieving grain yield in wheat. Funct Integr Genomics 11:37–48PubMedCrossRefGoogle Scholar
  3. Barrett J, Fry B, Maller J, Daly M (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  4. Beló A, Zheng P, Luck S, Shen B, Meyer D, Li B, Tingey S, Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10PubMedCrossRefGoogle Scholar
  5. Blanc G, Wolfe KH (2004) Widespread pale polyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678PubMedCrossRefGoogle Scholar
  6. Bradbury P, Zhang Z, Kroon D, Casstevens T, Ramdoss Y, Buckler E (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633PubMedCrossRefGoogle Scholar
  7. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedCrossRefGoogle Scholar
  8. Cardon L, Bell J (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99PubMedCrossRefGoogle Scholar
  9. Chan EKF, Rowe HC, Corwin JA, Joseph B, Kliebenstein DJ (2011) Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol 9:e1001125PubMedCrossRefGoogle Scholar
  10. Choi I, Hyten D, Matukumalli L, Song Q, Chaky J, Quigley C, Chase K, Lark K, Reiter R, Yoon M (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696PubMedCrossRefGoogle Scholar
  11. Chung J, Babka HL, Graef GL, Staswick PE, Lee DJ, Cregan PB, Shoemaker RC, Specht JE (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43:1053–1067CrossRefGoogle Scholar
  12. Csanádi G, Vollmann J, Stift G, Lelley T (2001) Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet 103:912–919CrossRefGoogle Scholar
  13. Cui S, He X, Fu S, Meng Q, Gai J, Yu D (2008) Genetic dissection of the relationship of apparent biological yield and apparent harvest index with seed yield and yield related traits in soybean. Aust J Agric Res 59:86–93CrossRefGoogle Scholar
  14. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  15. Ersoz E, Yu J, Buckler E (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Genomics-assisted crop improvement, vol :97, p 119Google Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  17. Flint-Garcia S, Thornsberry J, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374PubMedCrossRefGoogle Scholar
  18. Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet 111:851–861PubMedCrossRefGoogle Scholar
  19. Gabriel S, Schaffner S, Nguyen H, Moore J, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229PubMedCrossRefGoogle Scholar
  20. Garner C, Slatkin M (2003) On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci. Genet Epidemiol 24:57–67PubMedCrossRefGoogle Scholar
  21. Gupta P, Rustgi S, Kulwal P (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485PubMedCrossRefGoogle Scholar
  22. Guzman P, Neece B, Martin DJS, LeRoy S, Grau A, Hughes C, Nelson T (2007) QTL associated with yield in three backcross-derived populations of soybean. Crop Sci 47:111–122CrossRefGoogle Scholar
  23. Hardy O, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  24. Hoeck JA, Fehr WR, Shoemaker RC, Welke GA, Johnson SL, Cianzio SR (2003) Molecular marker analysis of seed size in soybean. Crop Sci 43:68–74CrossRefGoogle Scholar
  25. Holland J, Nyquist W, Cervantes-Martinez C (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112Google Scholar
  26. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967PubMedCrossRefGoogle Scholar
  27. Hyten D, Song Q, Zhu Y, Choi I, Nelson R, Costa J, Specht J, Shoemaker R, Cregan P (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666PubMedCrossRefGoogle Scholar
  28. Hyten D, Choi I, Song Q, Specht J, Carter JT, Shoemaker R, Hwang E, Matukumalli L, Cregan P (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968CrossRefGoogle Scholar
  29. Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR, Schmidt ME (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109:552–561PubMedCrossRefGoogle Scholar
  30. Hyten DL, Choi IY, Song Q, Shoemaker RC, Nelson RL, Costa JM, Specht JE, Cregan PB (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175:1937–1944PubMedCrossRefGoogle Scholar
  31. Jun TH, Van K, Kim M, Lee SH, Walker D (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162:179–191CrossRefGoogle Scholar
  32. Kabelka E, Diers B, Fehr W, LeRoy A, Baianu I, You T, Neece D, Nelson R (2004) Putative alleles for increased yield from soybean plant introductions. Crop Sci 44:784–791CrossRefGoogle Scholar
  33. Kassem M, Shultz J, Meksem K, Cho Y, Wood A, Iqbal M, Lightfoot D (2006) An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet 113:1015–1026PubMedCrossRefGoogle Scholar
  34. Keim P, Diers BW, Olson TC, Shoemaker RC (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126:735–742PubMedGoogle Scholar
  35. Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030PubMedCrossRefGoogle Scholar
  36. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SM, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059PubMedCrossRefGoogle Scholar
  37. Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195PubMedCrossRefGoogle Scholar
  38. Lee S, Park K, Lee H, Park E, Boerma H (2001) Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theor Appl Genet 103:702–709CrossRefGoogle Scholar
  39. Li D, Pfeiffer TW, Cornelius PL (2008a) Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci 48:571–581CrossRefGoogle Scholar
  40. Li J, Huang X, Heinrichs F, Ganal M, Röder M (2005) Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet 110:356–363Google Scholar
  41. Li Y, Li W, Zhang C, Yang L, Chang R, Gaut B, Qiu L (2010) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single nucleotide polymorphism loci. New Phytol 188:242–253PubMedCrossRefGoogle Scholar
  42. Li Y, Guan R, Liu Z, Ma Y, Wang L, Li L, Lin F, Luan W, Chen P, Yan Z (2008b) Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor Appl Genet 117:857–871PubMedCrossRefGoogle Scholar
  43. Liu K, Muse S (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128PubMedCrossRefGoogle Scholar
  44. Lu Y, Yan J, Guimares C, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek B (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115PubMedCrossRefGoogle Scholar
  45. Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J, Cao M, Rong T (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107(45):19585–19590PubMedCrossRefGoogle Scholar
  46. Ma QH (2007) Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. J Exp Bot 58:2011–2021PubMedCrossRefGoogle Scholar
  47. Malysheva-Otto L, Ganal M, Röder M (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6Google Scholar
  48. Mansur L, Lark K, Kross H, Oliveira A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet 86:907–913Google Scholar
  49. Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336CrossRefGoogle Scholar
  50. Mar L (1996) Molecular markers association associated with soybean plant height, lodging, and maturity across locations. Crop Sci 36(3):728–734CrossRefGoogle Scholar
  51. Mather K, Caicedo A, Polato N, Olsen K, McCouch S, Purugganan M (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232PubMedCrossRefGoogle Scholar
  52. Maughan PJ, Maroof MAS, Buss GR (1996) Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet 93:574–579CrossRefGoogle Scholar
  53. Mian MAR, Bailey MA, Tamulonis JP, Shipe ER, Carter TE, Parrott WA, Ashley DA, Hussey RS, Boerma HR (1996) Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet 93:1011–1016CrossRefGoogle Scholar
  54. Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219PubMedCrossRefGoogle Scholar
  55. Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4326PubMedCrossRefGoogle Scholar
  56. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170PubMedCrossRefGoogle Scholar
  57. Orf JH, Chase K, Adler FR, Mansur LM, Lark KG (1999a) Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean. Crop Sci 39:1652–1657CrossRefGoogle Scholar
  58. Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999b) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651CrossRefGoogle Scholar
  59. Palomeque L, Li-Jun L, Li W, Hedges B, Cober E, Rajcan I (2009) QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted: a high-yielding exotic soybean lines. Theor Appl Genet 119:417–427PubMedCrossRefGoogle Scholar
  60. Palomeque L, Liu L, Li W, Hedges B, Cober E, Smid M, Lukens L, Rajcan I (2010) Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans. Theor Appl Genet 120:997–1003PubMedCrossRefGoogle Scholar
  61. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945PubMedGoogle Scholar
  62. Rafalski J (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180PubMedCrossRefGoogle Scholar
  63. Schlueter J, Dixon P, Granger C, Grant D, Clark L, Doyle J, Shoemaker R (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876PubMedCrossRefGoogle Scholar
  64. Schmutz J, Cannon S, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D, Song Q, Thelen J, Cheng J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183PubMedCrossRefGoogle Scholar
  65. Shen R, Fan J, Campbell D, Chang W, Chen J, Doucet D, Yeakley J, Bibikova M, Wickham Garcia E, McBride C (2005) High-throughput SNP genotyping on universal bead arrays. Mutat Res Fundam Mol Mech Mutagen 573:70–82CrossRefGoogle Scholar
  66. Smalley MD, Fehr WR, Cianzio SR, Han F, Sebastian SA, Streit LG (2004) Quantitative trait loci for soybean seed yield in elite and plant introduction germplasm. Crop Sci 44:436–442Google Scholar
  67. Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509CrossRefGoogle Scholar
  68. Sulpice R, Pyl E, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques M (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA 106:10348PubMedCrossRefGoogle Scholar
  69. Van Inghelandt D, Melchinger A, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299PubMedCrossRefGoogle Scholar
  70. Vieira AJD, DAd Oliveira, Soares TCB, Schuster I, Piovesan ND, Martínez CA, Barros EGD, Moreira MA (2006) Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Brazil J Plant Physiol 18:281–290CrossRefGoogle Scholar
  71. Wang D, Graef GL, Procopiuk AM, Diers BW (2004) Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet 108:458–467PubMedCrossRefGoogle Scholar
  72. Wang J, McClean P, Lee R, Goos R, Helms T (2008) Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet 116:777–787PubMedCrossRefGoogle Scholar
  73. Wen W, Taba S, Shah T, Chavez Tovar VH, Yan J (2011) Detection of genetic integrity of conserved maize (Zea mays L.) germplasm in genebanks using SNP markers. Genet Res Crop Evol 58:189–207CrossRefGoogle Scholar
  74. Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442PubMedCrossRefGoogle Scholar
  75. Xu Y, Crouch J (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407CrossRefGoogle Scholar
  76. Yan J, Shah T, Warburton M, Buckler E, McMullen M, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PloS One 4:e8451PubMedCrossRefGoogle Scholar
  77. Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433CrossRefGoogle Scholar
  78. Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451CrossRefGoogle Scholar
  79. Yang X, Yan J, Shah T, Warburton M, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431PubMedCrossRefGoogle Scholar
  80. Yu J, Buckler E (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160PubMedCrossRefGoogle Scholar
  81. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  82. Yu J, Zhang Z, Zhu C, Tabanao DA, Pressoir G, Tuinstra MR, Kresovich S, Todhunter RJ, Buckler ES (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63–77CrossRefGoogle Scholar
  83. Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT, Schmidt ME, Lightfoot DA (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci 42:271–277PubMedCrossRefGoogle Scholar
  84. Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139PubMedCrossRefGoogle Scholar
  85. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4PubMedCrossRefGoogle Scholar
  86. Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Derong Hao
    • 1
    • 2
  • Hao Cheng
    • 1
  • Zhitong Yin
    • 3
  • Shiyou Cui
    • 2
  • Dan Zhang
    • 1
  • Hui Wang
    • 1
  • Deyue Yu
    • 1
    Email author
  1. 1.National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
  2. 2.Jiangsu Yanjiang Institute of Agricultural SciencesNantongChina
  3. 3.Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina

Personalised recommendations