Advertisement

Theoretical and Applied Genetics

, Volume 124, Issue 2, pp 233–246 | Cite as

Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars

  • Minghui Wang
  • Ning Jiang
  • Tianye Jia
  • Lindsey Leach
  • James Cockram
  • Robbie Waugh
  • Luke Ramsay
  • Bill Thomas
  • Zewei Luo
Original Paper

Abstract

Genome-wide association study (GWAS) has become an obvious general approach for studying traits of agricultural importance in higher plants, especially crops. Here, we present a GWAS of 32 morphologic and 10 agronomic traits in a collection of 615 barley cultivars genotyped by genome-wide polymorphisms from a recently developed barley oligonucleotide pool assay. Strong population structure effect related to mixed sampling based on seasonal growth habit and ear row number is present in this barley collection. Comparison of seven statistical approaches in a genome-wide scan for significant associations with or without correction for confounding by population structure, revealed that in reducing false positive rates while maintaining statistical power, a mixed linear model solution outperforms genomic control, structured association, stepwise regression control and principal components adjustment. The present study reports significant associations for sixteen morphologic and nine agronomic traits and demonstrates the power and feasibility of applying GWAS to explore complex traits in highly structured plant samples.

Keywords

Mixed Linear Model Late Embryogenesis Abundant Barley Cultivar Winter Barley Genomic Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by research grants for the ‘Association Genetics of UK Elite Barley’ project, which was funded by BBSRC and RERAD as part of the Sustainable Arable LINK programme with industrial support from HGCA, KWS (UK), LS Plant Breeding, Syngenta Seeds, Groupe Limagrain, Secobra UK, Svalof Weibull, Perten Instruments AB, The Maltsters Association of Great Britain, The Scotch Whisky Research Institute and Campden BRi. ZWL is also supported by the Leverhulme Trust (RCEJ1471) of UK, NSFC (31071084) and The Basic Research Program (2012CB316505) of China.

Supplementary material

122_2011_1697_MOESM1_ESM.doc (515 kb)
Supplementary material 1 (DOC 515 kb)
122_2011_1697_MOESM2_ESM.doc (66 kb)
Supplementary material 2 (DOC 65 kb)
122_2011_1697_MOESM3_ESM.doc (94 kb)
Supplementary material 3 (DOC 94 kb)
122_2011_1697_MOESM4_ESM.doc (72 kb)
Supplementary material 4 (DOC 72 kb)
122_2011_1697_MOESM5_ESM.doc (5.7 mb)
Supplementary material 5 (DOC 5847 kb)

References

  1. Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896PubMedCrossRefGoogle Scholar
  2. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471CrossRefGoogle Scholar
  3. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 traits in Arabidopsis thaliana inbred lines. Nature 465:627–631PubMedCrossRefGoogle Scholar
  4. Aulchenko YS, de Koning D-J, Haley C (2007) Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177:577–585PubMedCrossRefGoogle Scholar
  5. Bacanu SA, Devlin B, Roeder K (2002) Association studies for quantitative traits in structured populations. Genet Epidemiol 22:78–93PubMedCrossRefGoogle Scholar
  6. Balding D (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791PubMedCrossRefGoogle Scholar
  7. Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133PubMedCrossRefGoogle Scholar
  8. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066PubMedCrossRefGoogle Scholar
  9. Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582CrossRefGoogle Scholar
  10. Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16PubMedCrossRefGoogle Scholar
  11. Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D, Tapsell C, Liu H, Hedley PE, Stein N, Schulte D, Steuernagel B, Marshall DF, Thomas WTB, Ramsay L, Mackay I, Balding DJ, Consortium TA, Waugh R, O’Sullivan DM (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA (published ahead of print)Google Scholar
  12. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004PubMedCrossRefGoogle Scholar
  13. Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353PubMedCrossRefGoogle Scholar
  14. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edition. Longman Press, New YorkGoogle Scholar
  15. Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157PubMedCrossRefGoogle Scholar
  16. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485PubMedCrossRefGoogle Scholar
  17. Hamblin MT, Close TJ, Bhat PR, Chao S, Kling JG, Abraham KJ, Blake T, Brooks WS, Cooper B, Griffey CA, Hayes PM, Hole DJ, Horsley RD, Obert DE, Smith KP, Ullrich SE, Muehlbauer GJ, Jannink J-L (2010) Population structure and linkage disequilibrium in U.S. Barley Germplasm: implications for association mapping. Crop Sci 50:556–566CrossRefGoogle Scholar
  18. Hayes PM, Castro A, Marquez-Cedillo L, Corey A, Henson C, Jones BL, Kling J, Mather D, Matus I, Rossi C, Sato K (2003) Genetic diversity for quantitatively inherited agronomic and malting quality traits. Diversity in Barley (Hordeum vulgare). Elsevier, AmsterdamGoogle Scholar
  19. Hoggart CJ, Parra EJ, Shriver MD, Bonilla C, Kittles RA, Clayton DG, McKeigue PM (2003) Control of confounding of genetic associations in stratified populations. Am J Hum Genet 72:1492–1504PubMedCrossRefGoogle Scholar
  20. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723PubMedCrossRefGoogle Scholar
  21. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354PubMedCrossRefGoogle Scholar
  22. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429PubMedCrossRefGoogle Scholar
  23. Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446PubMedCrossRefGoogle Scholar
  24. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63PubMedCrossRefGoogle Scholar
  25. Malysheva-Otto LV, Ganal MW, Roder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6Google Scholar
  26. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977PubMedCrossRefGoogle Scholar
  27. Pelleg D, Moore A (2000) X-means: extending k-means with efficient estimation of the number of clusters. In: Proceedings of the seventeenth international conference on machine learning. Morgan Kaufmann, San Francisco, pp 727–734Google Scholar
  28. Platt A, Horton M, Huang YS, Li Y, Anastasio AE, Mulyati NW, Ågren J, Bossdorf O, Byers D, Donohue K, Dunning M, Holub EB, Hudson A, Le Corre V, Loudet O, Roux F, Warthmann N, Weigel D, Rivero L, Scholl R, Nordborg M, Bergelson J, Borevitz JO (2010) The scale of population structure in Arabidopsis thaliana. PLoS Genet 6:e1000843PubMedCrossRefGoogle Scholar
  29. Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101PubMedCrossRefGoogle Scholar
  30. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909PubMedCrossRefGoogle Scholar
  31. Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11:459–463PubMedCrossRefGoogle Scholar
  32. Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  33. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181PubMedCrossRefGoogle Scholar
  34. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCrossRefGoogle Scholar
  35. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doeblay J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484PubMedCrossRefGoogle Scholar
  36. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Grainer A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661PubMedCrossRefGoogle Scholar
  37. Schmalenbach I, Pillen K (2009) Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet 118:1411–1427PubMedCrossRefGoogle Scholar
  38. Setakis E, Stirnadel H, Balding DJ (2006) Logistic regression protects against population structure in genetic association studies. Genome Res 16:290–296Google Scholar
  39. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Kruger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug M, Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao JJ, Huang XM, Wood NW, Lorenz D, Deuschl G, Chen HL, Riess O, Hardy JA, Singleton AB, Gasser T (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–1309PubMedCrossRefGoogle Scholar
  40. Sneller CH, Mather DE, Crepieux S (2009) Analytical approaches and population types for finding and utilizing QTL in complex plant populations. Crop Sci 49:363–380CrossRefGoogle Scholar
  41. Sun G, Zhu C, Kramer MH, Yang SS, Song W, Piepho HP, Yu J (2010) Variation explained in mixed-model association mapping. Heredity 105:333–340PubMedCrossRefGoogle Scholar
  42. Szűcs P, Skinner J, Karsai I, Cuesta-Marcos A, Haggard K, Corey A, Chen T, Hayes P (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol Genet Genom 277:249–261CrossRefGoogle Scholar
  43. Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062–4067PubMedCrossRefGoogle Scholar
  44. von Zitzewitz J, Szucs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen TH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467CrossRefGoogle Scholar
  45. Wilk MB, Gnanadesikan R (1968) Probability plotting methods for the analysis of data. Biometrika 55:1–17PubMedGoogle Scholar
  46. Wu C, DeWan A, Hoh J, Wang Z (2010) A comparison of association methods correcting for population stratification in case–control studies. Ann Hum Genet 00:1–10Google Scholar
  47. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586PubMedCrossRefGoogle Scholar
  48. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  49. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4PubMedCrossRefGoogle Scholar
  50. Ziv E, Burchard EG (2003) Human population structure and genetic association studies. Pharmacogenomics 4:431–441PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Minghui Wang
    • 1
  • Ning Jiang
    • 1
    • 2
  • Tianye Jia
    • 1
  • Lindsey Leach
    • 3
  • James Cockram
    • 4
  • Robbie Waugh
    • 2
  • Luke Ramsay
    • 2
  • Bill Thomas
    • 2
  • Zewei Luo
    • 1
  1. 1.School of BiosciencesThe University of BirminghamBirminghamUK
  2. 2.BioSS UnitScottish Crop Research InstituteDundeeUK
  3. 3.Department of Plant SciencesUniversity of OxfordOxfordUK
  4. 4.John Bingham LaboratoryNational Institute of Agricultural BotanyCambridgeUK

Personalised recommendations