Theoretical and Applied Genetics

, Volume 124, Issue 1, pp 87–96 | Cite as

Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.)

  • H. Zhu
  • D. Senalik
  • B. H. McCown
  • E. L. Zeldin
  • J. Speers
  • J. Hyman
  • N. Bassil
  • K. Hummer
  • P. W. Simon
  • J. E. Zalapa
Original Paper

Abstract

The American cranberry (Vaccinium macrocarpon Ait.) is a major commercial fruit crop in North America, but limited genetic resources have been developed for the species. Furthermore, the paucity of codominant DNA markers has hampered the advance of genetic research in cranberry and the Ericaceae family in general. Therefore, we used Roche 454 sequencing technology to perform low-coverage whole genome shotgun sequencing of the cranberry cultivar ‘HyRed’. After de novo assembly, the obtained sequence covered 266.3 Mb of the estimated 540–590 Mb in cranberry genome. A total of 107,244 SSR loci were detected with an overall density across the genome of 403 SSR/Mb. The AG repeat was the most frequent motif in cranberry accounting for 35% of all SSRs and together with AAG and AAAT accounted for 46% of all loci discovered. To validate the SSR loci, we designed 96 primer-pairs using contig sequence data containing perfect SSR repeats, and studied the genetic diversity of 25 cranberry genotypes. We identified 48 polymorphic SSR loci with 2–15 alleles per locus for a total of 323 alleles in the 25 cranberry genotypes. Genetic clustering by principal coordinates and genetic structure analyzes confirmed the heterogeneous nature of cranberries. The parentage composition of several hybrid cultivars was evident from the structure analyzes. Whole genome shotgun 454 sequencing was a cost-effective and efficient way to identify numerous SSR repeats in the cranberry sequence for marker development.

Supplementary material

122_2011_1689_MOESM1_ESM.doc (411 kb)
Supplementary material 1 (DOC 411 kb)

References

  1. Abdelkrim J, Robertson BC, Stanton JAL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192PubMedCrossRefGoogle Scholar
  2. Allentoft ME, Schuster SC, Holdaway RN, Hale ML, McLay E, Oskam C, Gilbert MTP, Spencer P, Willerslev E, Bunce M (2009) Identification of microsatellites from an extinct moa species using high throughput (454) sequence data. Biotechniques 46:195–200PubMedCrossRefGoogle Scholar
  3. Bassil N, Oda A, Hummer KE (2009) Blueberry microsatellite markers identify cranberry cultivars. Acta Hort 810:181–187Google Scholar
  4. Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660CrossRefGoogle Scholar
  5. Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by TAQ DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010PubMedGoogle Scholar
  6. Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050PubMedCrossRefGoogle Scholar
  7. Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569–586PubMedCrossRefGoogle Scholar
  8. Costich DE, Ortiz R, Meagher TR, Bruederle LP, Vorsa N (1993) Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry. Theor Appl Genet 86:1001–1006CrossRefGoogle Scholar
  9. Csencsics D, Brodbeck S, Holderegger R (2010) Cost-effective, species-specific microsatellite development for the endangered dwarf bulrush (Typha minima) using next-generation sequencing technology. J Hered 101:789–793PubMedCrossRefGoogle Scholar
  10. Dana MN (1983) Cranberry cultivar list. Frt Var J 37:88–95Google Scholar
  11. da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, de Carvalho FI, de Oliveira AC (2008) SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics 41:2696Google Scholar
  12. Debnath SC (2007) An assessment of the genetic diversity within a collection of wild cranberry (Vaccinium macrocarpon Ait) clones with RAPD-PCR. Genet Resour Crop Ev 54:509–517CrossRefGoogle Scholar
  13. Eck P (1990) The American cranberry. Rutgers University Press, New BrunswickGoogle Scholar
  14. Kalt W (2002) Health functional phytochemicals of fruits. Hortic Rev 27:269–315Google Scholar
  15. Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18:30–38PubMedCrossRefGoogle Scholar
  16. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Open source MUMmer 30 is described in: versatile and open software for comparing large genomes. Genome Biol 5:R12PubMedCrossRefGoogle Scholar
  17. Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2:231–239PubMedCrossRefGoogle Scholar
  18. McCown BH, Zeldin EL (2003) ‘HyRed’ and early, high fruit color cranberry hybrid. HortScience 38:304–305Google Scholar
  19. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200PubMedCrossRefGoogle Scholar
  20. Novy RG, Vorsa N (1995) Identification of intracultivar genetic heterogeneity in cranberry using silver-stained RAPDs. HortScience 30:600–604Google Scholar
  21. Novy RG, Kobak C, Goffreda J, Vorsa N (1994) RAPDs identify varietal misclassification and regional divergence in cranberry (Vaccinium macrocarpon Ait.). Theor Appl Genet 88:1004–1010CrossRefGoogle Scholar
  22. Novy RG, Vorsa N, Patten K (1996) Identifying genotypic heterogeneity in McFarlin’ cranberry: a randomly-amplified polymorphic DNA (RAPD) and phenotypic analysis. J Am Soc Hort Sci 2:210–215Google Scholar
  23. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  24. Perry JC, Rowe L (2011) Rapid microsatellite development for water striders by next-generation sequencing. J Hered 102:125–129PubMedCrossRefGoogle Scholar
  25. Polashock JJ, Vorsa N (2002) Development of SCAR markers for DNA fingerprinting and germplasm analysis of American cranberry. J Am Soc Hortic Sci 127:677–684Google Scholar
  26. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  27. Rowland LJ, Dhanaraj AL, Polashock JJ, Arora R (2003) Utility of blueberry-derived EST-PCR primers in related Ericaceae species. HortScience 38:1428–1432Google Scholar
  28. Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7:222–234PubMedCrossRefGoogle Scholar
  29. Saarinen EV, Austin JD (2010) When technology meets conservation: increased microsatellite marker production using 454 genome sequencing on the endangered Okaloosa darter (Etheostoma okaloosae). J Hered 101:784–788PubMedCrossRefGoogle Scholar
  30. Santana QC, Coetzee MPA, Steenkamp ET, Mlonyeni OX, Hammond GNA, Wingfield MJ, Wingfield BD (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 46:217–223PubMedCrossRefGoogle Scholar
  31. Schnable P, Ware D, Fulton R, Stein J, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T, Minx P, Reily A, Courtney L, Kruchowskz S, Tomlinson C et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115PubMedCrossRefGoogle Scholar
  32. Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573PubMedCrossRefGoogle Scholar
  33. Stewart CN, Excoffier L (1996) Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American cranberry). J Evol Biol 9:153–171CrossRefGoogle Scholar
  34. Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genom 272:603–615CrossRefGoogle Scholar
  35. Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean [Vigna radiata (L) Wilczek]. BMC Plant Biol 9:137–148PubMedCrossRefGoogle Scholar
  36. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  37. Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  38. Victoria FC, da Maia LC, de Oliveira AC (2011) In silico comparative analysis of SSR markers in plants. BMC Plant Biol 11:15PubMedCrossRefGoogle Scholar
  39. Wang SY, Stretch AW (2001) Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J Agric Food Chem 49:969–974PubMedCrossRefGoogle Scholar
  40. Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1–6Google Scholar
  41. Yu JW, Dixit A, Ma KH, Chung JW, Park YJ (2009) A study on relative abundance, composition and length variation of microsatellites in eighteen underutilized crop species. Genet Resour Crop Evol 56:237–246CrossRefGoogle Scholar
  42. Zalapa JE, Brunet J, Guries RP (2008) Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl) and cross-species amplification with Siberian elm (Ulmus pumila L). Mol Ecol Resour 8:109–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • H. Zhu
    • 2
  • D. Senalik
    • 1
  • B. H. McCown
    • 2
  • E. L. Zeldin
    • 2
  • J. Speers
    • 3
  • J. Hyman
    • 3
  • N. Bassil
    • 4
  • K. Hummer
    • 4
  • P. W. Simon
    • 1
  • J. E. Zalapa
    • 1
  1. 1.Vegetable Crops Research Unit, Department of HorticultureUniversity of Wisconsin, USDA-ARSMadisonUSA
  2. 2.Department of HorticultureUniversity of WisconsinMadisonUSA
  3. 3.Biotechnology Center, DNA Sequencing FacilityUniversity of WisconsinMadisonUSA
  4. 4.National Clonal Germplasm Repository, USDA-ARSCorvallisUSA

Personalised recommendations