Theoretical and Applied Genetics

, Volume 123, Issue 8, pp 1341–1357 | Cite as

Nucleotide diversity of a genomic sequence similar to SHATTERPROOF (PvSHP1) in domesticated and wild common bean (Phaseolus vulgaris L.)

  • L. Nanni
  • E. Bitocchi
  • E. Bellucci
  • M. Rossi
  • D. Rau
  • G. Attene
  • P. Gepts
  • R. Papa
Original Paper


Evolutionary studies in plant and animal breeding are aimed at understanding the structure and organization of genetic variations of species. We have identified and characterized a genomic sequence in Phaseolus vulgaris of 1,200 bp (PvSHP1) that is homologous to SHATTERPROOF-1 (SHP1), a gene involved in control of fruit shattering in Arabidopsis thaliana. The PvSHP1 fragment was mapped to chromosome Pv06 in P. vulgaris and is linked to the flower and seed color gene V. Amplification of the PvSHP1 sequence from the most agronomically important legume species showed a high degree of interspecies diversity in the introns within the Phaseoleae, while the coding region was conserved across distant taxa. Sequencing of the PvSHP1 sequence in a sample of 91 wild and domesticated genotypes that span the geographic distribution of this species in the centers of origin showed that PvSHP1 is highly polymorphic and, therefore, particularly useful to further investigate the origin and domestication history of P. vulgaris. Our data confirm the gene pool structure seen in P. vulgaris along with independent domestication processes in the Andes and Mesoamerica; they provide additional evidence for a single domestication event in Mesoamerica. Moreover, our results support the Mesoamerican origin of this species. Finally, we have developed three indel-spanning markers that will be very useful for bean germplasm characterization, and particularly to trace the distribution of the domesticated Andean and Mesoamerican gene pools.


Amplify Fragment Length Polymorphism Common Bean Amplify Fragment Length Polymorphism Marker Recombinant Inbred Line Population Phaseolin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Nanni L. and Bitocchi E. made equal contributions to this study, and so should be considered joint first authors. This study was supported by the Italian Government (MIUR) grant no. # 2005071310, Project PRIN 2005, and by the Università Politecnica delle Marche (years 2005–2009).

Supplementary material

122_2011_1671_MOESM1_ESM.xls (54 kb)
Supplementary material descriptive captions Table A1. Genotypes of Phaseolus spp. and other legumes used in this study. (XLS 54 kb)


  1. Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Pre-breeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47:44–59CrossRefGoogle Scholar
  2. Allaby RG, Fuller DQ, Brown TA (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci USA 105:13982–13986PubMedCrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. Angioi SA, Desiderio F, Rau D, Bitocchi E, Attene G, Papa R (2009) Development and use of chloroplast microsatellites in Phaseolus spp. and other legumes. Plant Biol 11:598–612PubMedCrossRefGoogle Scholar
  5. Angioi SA, Rau D, Attene G, Nanni L, Bellucci E, Logozzo G, Negri V, Spagnoletti Zeuli PL, Papa R (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121:829–843PubMedCrossRefGoogle Scholar
  6. Avise JC (1995) Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. Conserv Biol 9:686–690CrossRefGoogle Scholar
  7. Beebe S, Skroch P, Tohme J, Duque M, Pedraza F, Nienhuis J (2000) Structure of genetic diversity among common bean landraces of middle-American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273CrossRefGoogle Scholar
  8. Beebe S, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862CrossRefGoogle Scholar
  9. Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163PubMedCrossRefGoogle Scholar
  10. Blair MW, Diaz LM, Buendia HF, Dunque MC (2009) Genetic diversity. seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972PubMedCrossRefGoogle Scholar
  11. Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3(9):e163CrossRefGoogle Scholar
  12. Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567PubMedCrossRefGoogle Scholar
  13. Chacón SMI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444CrossRefGoogle Scholar
  14. Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374PubMedGoogle Scholar
  15. Corander J, Marttinen P (2006) Bayesian identification of admixture events using multi-locus molecular markers. Mol Ecol 15:2833–2843PubMedCrossRefGoogle Scholar
  16. Corander J, Tang J (2007) Bayesian analysis of population structure based on linked molecular information. Math Biosci 205:19–31PubMedCrossRefGoogle Scholar
  17. Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinf 9:539CrossRefGoogle Scholar
  18. Debouck DG, Toro O, Paredes OM, Johnson WC, Gepts P (1993) Genetic diversity and ecological distribution of Phaseolus vulgaris in northwestern South America. Econ Bot 47:408–423CrossRefGoogle Scholar
  19. Delgado-Salinas A, Turley T, Richman A, Lavin M (1999) Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst Bot 24:438–460CrossRefGoogle Scholar
  20. Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the Genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot 31:779–791CrossRefGoogle Scholar
  21. Dìaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154PubMedCrossRefGoogle Scholar
  22. Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA 101:9045–9050PubMedCrossRefGoogle Scholar
  23. Duarte J, Dos Santos J, Melo L (1999) Genetic divergence among common bean cultivars from different races based on RAPD markers. Genet Mol Biol 22:419–426CrossRefGoogle Scholar
  24. Felsenstein J (1993) Phylogeny Inference Package (PHYLIP). Version 3.5. Distributed by the author. Department of Genetics. University of Washington, Seattle, USAGoogle Scholar
  25. Freyre R, Skroch P, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson W, Llaca V, Nodari RO, Pereira PA, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97:847–856CrossRefGoogle Scholar
  26. Freytag GF, Debouck DG (1996) Phaseolus costaricensis, a new wild bean species (Phaseolinae, Leguminosae) from Costa Rica and Panama, central America. Novon 6:157–163CrossRefGoogle Scholar
  27. Freytag GF, Debouck DG (2002) Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and central America. Botanical Research Institute of Texas. Ft. Worth, TXGoogle Scholar
  28. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  29. Gaudeul M, Till-Bottraud I, Barjon F, Manel S (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity 92:508–518PubMedCrossRefGoogle Scholar
  30. Gepts P, Bliss FA (1986) Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ Bot 40:469–478CrossRefGoogle Scholar
  31. Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ Bot 40:451–468CrossRefGoogle Scholar
  32. Gepts P, Kmiecik K, Pereira P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. I. The Americas. Econ Bot 42:73–85CrossRefGoogle Scholar
  33. Glémin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication. New Phytol 183:273–290PubMedCrossRefGoogle Scholar
  34. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  35. Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517PubMedCrossRefGoogle Scholar
  36. Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltrán JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434PubMedCrossRefGoogle Scholar
  37. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192Google Scholar
  38. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164PubMedGoogle Scholar
  39. Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589PubMedGoogle Scholar
  40. Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014PubMedGoogle Scholar
  41. Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671PubMedCrossRefGoogle Scholar
  42. Kami J, Becerra Velásquez V, Debouckand DG, Gepts P (1995) Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc Natl Acad Sci USA 92:1101–1104PubMedCrossRefGoogle Scholar
  43. Kilian B, Özkan H, Kohl J, von Haeseler A, Barale F, Deusch O, Brandolini A, Yucel C, Martin W, Salamini F (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genom 276:230–241CrossRefGoogle Scholar
  44. Kilian B, Özkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveals no reduction in nucleotide diversity during Triticum monococcum (Einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24:2657–2668PubMedCrossRefGoogle Scholar
  45. Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045CrossRefGoogle Scholar
  46. Kropf M, Comes HP, Kadereit JW (2009) An AFLP clock for the absolute dating of shallow-time evolutionary history based on the intraspecific divergence of southwestern European alpine plant species. Mol Ecol 18:697–708PubMedCrossRefGoogle Scholar
  47. Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992PubMedCrossRefGoogle Scholar
  48. Kwak M, Kami J, Gepts P (2009) The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago Basin of Mexico. Crop Sci 49:554–563CrossRefGoogle Scholar
  49. Lander P, Green J, Abrahamson A, Barlow M, Lincoln DS, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  50. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  51. Liljegren S, Ditta G, Eshed Y, Savidge B, Bowmanand J, Yanofsky M (2000) Control of fruit dehiscence in Arabidopsis by the SHATTERPROOF MADS-box genes. Nature 404:766–769PubMedCrossRefGoogle Scholar
  52. Liu A, Burke JM (2006) Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics 173:321–330PubMedCrossRefGoogle Scholar
  53. Löytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA 102:10557–10562PubMedCrossRefGoogle Scholar
  54. Löytynoja A, Goldman N (2008) A model of evolution and structure for multiple sequence alignment. Philos Trans R Soc Lond B Biol Sci 363:3913–3919PubMedCrossRefGoogle Scholar
  55. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155PubMedCrossRefGoogle Scholar
  56. Mariette S, Chagne D, Lezier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479PubMedCrossRefGoogle Scholar
  57. McConnell M, Mamidi S, Lee R, Chikara S, Rossi M, Papa R, McClean P (2010) Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 121:1103–1116PubMedCrossRefGoogle Scholar
  58. McClean PE, Lee RK, Otto C, Gepts P, Bassett M (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152PubMedCrossRefGoogle Scholar
  59. McClean PE, Lee RK, Miklas PN (2004) Sequence diversity analysis of dihydrofl avonol 4-reductase intron1 in common bean. Genome 47:266–280PubMedCrossRefGoogle Scholar
  60. McClean PE, Lee RK (2007) Genetic architecture of chalcone isomerase non-coding regions in common bean (Phaseolus vulgaris L.). Genome 50:203–214PubMedCrossRefGoogle Scholar
  61. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:106–131CrossRefGoogle Scholar
  62. Muller MH, Poncet C, Prosperi JM, Santoniand S, Ronfort J (2006) Domestication history in the Medicago sativa species complex: inferences from nuclear sequence polymorphism. Mol Ecol 15:1589–1602PubMedCrossRefGoogle Scholar
  63. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability of populations. Evolution 29:1–10CrossRefGoogle Scholar
  64. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  65. Nei M, Gojobori T (1986) Simple methods for estimating the number of synonymous and non-synonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  66. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  67. Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520CrossRefGoogle Scholar
  68. Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250PubMedGoogle Scholar
  69. Papa R, Acosta J, Delgado-Salinas A, Gepts P (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158PubMedCrossRefGoogle Scholar
  70. Papa R, Nanni L, Sicard D, Rau D, Attene G (2006) The evolution of genetic diversity in Phaseolus vulgaris L. In: Motley TJ, Zerega N, Cross H (eds) New approaches to the origins. Evolution and conservation of crops. Darwin’s Harvest. Columbia University Press, New York, pp 121–142Google Scholar
  71. Pedrosa HA, Souza de Almeida CC, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933CrossRefGoogle Scholar
  72. Pinyopich A, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2003) Unraveling the redundant roles of MADS-box genes during carpel and fruit development. Nature 424:85–88PubMedCrossRefGoogle Scholar
  73. Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488PubMedCrossRefGoogle Scholar
  74. Purugganan MD, Fuller D (2009) The nature of selection during plant domestication. Nature 457:843–848PubMedCrossRefGoogle Scholar
  75. Rosales-Serna R, Hernandez-Delgado S, Gonzalez-Paz M, Acosta-Gallegos JA, Mayek-Perez N (2005) Genetic relationships and diversity revealed by AFLP markers in Mexican common bean bred cultivars. Crop Sci 45:1951–1957CrossRefGoogle Scholar
  76. Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522CrossRefGoogle Scholar
  77. Santalla M, Menéndez-Sevillano MC, Monteagudo AB, De Ron AM (2004) Genetic diversity of Argentinean common bean and its evolution during domestication. Euphytica 135:75–87CrossRefGoogle Scholar
  78. Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876PubMedCrossRefGoogle Scholar
  79. Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ Bot 45:379–396CrossRefGoogle Scholar
  80. Singh RJ, Kim HH, Hymowitz T (2001) Distribution of rDNA loci in the genus Glycine Willd. Theor Appl Genet 103:212–218CrossRefGoogle Scholar
  81. Tajima F (1983) Evolution relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedGoogle Scholar
  82. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  83. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software, version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  84. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21:1214–1225PubMedCrossRefGoogle Scholar
  85. Thompson JD, Gibson TJ, Plewniak F, Jeanmouginand F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  86. Thuillet AC, Bataillon T, Poirier S, Santoni S, David JL (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169:1589–1599PubMedCrossRefGoogle Scholar
  87. Toro O, Tohme J, Debouck DG (1990) Wild Bean (Phaseolus vulgaris L): description and distribution. Centro Internacional de Agricultura Tropical, Cali, ColombiaGoogle Scholar
  88. Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655PubMedCrossRefGoogle Scholar
  89. Vrebalov J, Panb IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymoure G, Grandillo S, Giovannoni J, Irish VF (2009) Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell 21:3041–3062PubMedCrossRefGoogle Scholar
  90. Watterson GA (1975) On the number of segregating sites in genetic models without recombination. Theor Popul Biol 7:256–276PubMedCrossRefGoogle Scholar
  91. Weber J, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128PubMedCrossRefGoogle Scholar
  92. Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862PubMedCrossRefGoogle Scholar
  93. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • L. Nanni
    • 1
  • E. Bitocchi
    • 1
  • E. Bellucci
    • 1
  • M. Rossi
    • 1
  • D. Rau
    • 2
  • G. Attene
    • 2
  • P. Gepts
    • 3
  • R. Papa
    • 1
    • 4
  1. 1.Dipartimento di Scienze Agrarie, Alimentari ed AmbientaliUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Dipartimento di Scienze Agronomiche e Genetica Vegetale AgrariaUniversità degli Studi di SassariSassariItaly
  3. 3.Department of Plant Sciences/MS1Section of Crop and Ecosystem SciencesDavisUSA
  4. 4.Cereal Research Centre, Agricultural Research Council (CRA-CER)FoggiaItaly

Personalised recommendations