Theoretical and Applied Genetics

, 123:1231 | Cite as

Genetic diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor wild–weedy–crop complex in a western African region

  • Fabrice Sagnard
  • Monique Deu
  • Dékoro Dembélé
  • Raphaël Leblois
  • Lassana Touré
  • Mohamed Diakité
  • Caroline Calatayud
  • Michel Vaksmann
  • Sophie Bouchet
  • Yaya Mallé
  • Sabine Togola
  • Pierre C. Sibiry Traoré
Original Paper

Abstract

Gene flow between domesticated plants and their wild relatives is one of the major evolutionary processes acting to shape their structure of genetic diversity. Earlier literature, in the 1970s, reported on the interfertility and the sympatry of wild, weedy and cultivated sorghum belonging to the species Sorghum bicolor in most regions of sub-Saharan Africa. However, only a few recent surveys have addressed the geographical and ecological distribution of sorghum wild relatives and their genetic structure. These features are poorly documented, especially in western Africa, a centre of diversity for this crop. We report here on an exhaustive in situ collection of wild, weedy and cultivated sorghum assembled in Mali and in Guinea. The extent and pattern of genetic diversity were assessed with 15 SSRs within the cultivated pool (455 accessions), the wild pool (91 wild and weedy forms) and between them. FST and RST statistics, distance-based trees, Bayesian clustering methods, as well as isolation by distance models, were used to infer evolutionary relationships within the wild–weedy–crop complex. Firstly, our analyses highlighted a strong racial structure of genetic diversity within cultivated sorghum (FST = 0.40). Secondly, clustering analyses highlighted the introgressed nature of most of the wild and weedy sorghum and grouped them into two eco-geographical groups. Such closeness between wild and crop sorghum could be the result of both sorghum’s domestication history and preferential post-domestication crop-to-wild gene flow enhanced by farmers’ practices. Finally, isolation by distance analyses showed strong spatial genetic structure within each pool, due to spatially limited dispersal, and suggested consequent gene flow between the wild and the crop pools, also supported by RST analyses. Our findings thus revealed important features for the collection, conservation and biosafety of domesticated and wild sorghum in their centre of diversity.

Supplementary material

122_2011_1662_MOESM1_ESM.pdf (6 kb)
Supplementary Electronic File 1 (PDF 6 kb)
122_2011_1662_MOESM2_ESM.pdf (10 kb)
Supplementary Electronic File 2 (PDF 10 kb)
122_2011_1662_MOESM3_ESM.pdf (6 kb)
Supplementary Electronic File 3 (PDF 5 kb)
122_2011_1662_MOESM4_ESM.pdf (20 kb)
Supplementary Electronic File 4 (PDF 19 kb)
122_2011_1662_MOESM5_ESM.pdf (101 kb)
Supplementary Electronic File 5 (PDF 101 kb)
122_2011_1662_MOESM6_ESM.pdf (9 kb)
Supplementary Electronic File 6 (PDF 8 kb)

References

  1. Arnold MJ (2004) Natural hybridization and the evolution of domesticated, pest and disease organisms. Mol Ecol 13:997–1007PubMedCrossRefGoogle Scholar
  2. Barnaud A, Deu M, Garine E, McKey D, Joly H (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248PubMedCrossRefGoogle Scholar
  3. Barnaud A, Deu M, Garine E, Chantereau J, Bolteu J, Koïda EO, Mc Key D, Joly HI (2009) A weed–crop complex in sorghum: the dynamics of genetic diversity in a traditional farming system. Amer J Bot 96(10):1869–1879CrossRefGoogle Scholar
  4. Barro-Kondombo C, Sagnard F, Chantereau J, Deu M, vom Brocke K, Durand P, Gozé E, Zongo JD (2010) Genetic structure among sorghum landraces as revealed by morphological variation and microsatellite markers in three agroclimatic regions of Burkina Faso. Theor Appl Genet 120:1511–1523PubMedCrossRefGoogle Scholar
  5. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2002) Genetix 4.04, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France. (Available from http://www.univ-montp2.fr/~genetix/genetix/genetix.htm)
  6. Bezançon G, Pham JL, Deu M, Vigouroux Y, Sagnard F, Mariac C, Kapran I, Mamadou A, Gérard B, Ndjeunga J, Chantereau J (2009) Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum [L.] R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet Resour Crop Evol 56:223–236CrossRefGoogle Scholar
  7. Brown PJ, Myles S, Kresovich S (2011) Genetic support for phenotype-based racial classification in Sorghum. Crop Sci 51:224–230CrossRefGoogle Scholar
  8. de Wet JMJ (1978) Systematics and evolution of Sorghum sect. Sorghum (Gramineae). Am J Bot 65(4):477–484CrossRefGoogle Scholar
  9. de Wet JMJ, Harlan JR (1971) The origin and domestication of Sorghum bicolor. Econ Bot 25:129–134CrossRefGoogle Scholar
  10. de Wet JMJ, Harlan JR, Price EG (1970) Origin of variability in the spontanea complex of Sorghum bicolor. Am J Bot 57(6):704–707CrossRefGoogle Scholar
  11. de Wet JMJ, Harlan JR, Price EG (1976) Variability in Sorghum bicolor. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication. Mouton, The Hague, pp 453–463Google Scholar
  12. Deu M, Hamon P, Chantereau J, Dufour P, D’Hont A, Lanaud C (1995) Mitochondrial DNA diversity in wild and cultivated sorghum. Genome 38:635–645PubMedCrossRefGoogle Scholar
  13. Deu M, Rattunde F, Chantereau J (2006) A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49:168–180PubMedGoogle Scholar
  14. Deu M, Sagnard F, Chantereau J, Calatayud C, Hérault D, Mariac C, Pham JL, Vigouroux Y, Kapran I, Traoré PS, Mamadou A, Gérard B, Ndjeunga J, Bezançon G (2008) Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers. Theor Appl Genet 116:903–916PubMedCrossRefGoogle Scholar
  15. Deu M, Sagnard F, Chantereau J, Calatayud C, Vigouroux Y, Pham JL, Mariac C, Kapran I, Mamadou A, Gérard B, Ndjeunga J, Bezançon G (2010) Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger. Theor Appl Genet 120:1301–1313Google Scholar
  16. Doggett H (1988) Sorghum, 2nd edn. Longman Scientific and Technical, LondonGoogle Scholar
  17. Ejeta G, Grenier C (2005) Sorghum and its weedy hybrids. In: Gressel J (ed) Crop ferality and volunteerism. Taylor & Francis, Boca Raton, pp 123–135Google Scholar
  18. Ellstrand NC (2003) Current knowledge on gene flow in plants: implications for transgene flow. Phil Trans R Soc Lond B 358:1163–1170CrossRefGoogle Scholar
  19. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563CrossRefGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  21. Folkertsma RT, Rattunde HFW, Chandra S, Soma Raju W, Hash CT (2005) The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. Theor Appl Genet 111:399–409PubMedCrossRefGoogle Scholar
  22. Gepts P, Papa R (2003) Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosafety Res 2:89–103PubMedCrossRefGoogle Scholar
  23. Goudet J (2002) FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3.2. Available from http://www.unil.ch/izea/softwares/fstat.html)
  24. Gressel J (2005) Introduction—the challenges of ferality. In: Gressel J (ed) Crop ferality and volunteerism. Taylor & Francis, Boca Raton, pp 1–7CrossRefGoogle Scholar
  25. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  26. Hardy OJ, Charbonnel N, Fréville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482PubMedGoogle Scholar
  27. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20(4):509–517CrossRefGoogle Scholar
  28. Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176CrossRefGoogle Scholar
  29. Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and famer selection of new genetic combinations in agroecosystems. Mol Ecol 8:159–173CrossRefGoogle Scholar
  30. Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:13–23CrossRefGoogle Scholar
  31. Kalinowski ST (2005) HP-RARE1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  32. Kameswara Rao N, Reddy LJ, Bramel PJ (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol l50:707–721CrossRefGoogle Scholar
  33. Kouressy M, Traoré S, Vaksmann M, Grum M, Maikano I, Soumaré M, Traoré PS, Bazile D, Dingkuhn M, Sidibé A (2008) Adaptation des sorghos du Mali à la variabilité climatique. Cah Agric 17(2):95–100Google Scholar
  34. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Available from http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php
  35. Mariac C, Robert T, Allinne C, Remigereau MS, Luxereau A, Tidjani M, Seyni O, Bezançon G, Pham JL, Sarr A (2006a) Genetic diversity and gene flow among pearl millet crop/weed complex: a case study. Theor Appl Genet 113:1003–1004PubMedCrossRefGoogle Scholar
  36. Mariac C, Luong V, Kapran I, Mamadou A, Sagnard F, Deu M, Chantereau J, Gérard B, Ndjeunga J, Bezancon G, Pham JL, Vigouroux Y (2006b) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114:49–58PubMedCrossRefGoogle Scholar
  37. Martel C, Réjasse A, Rousset F, Bethenod M-T, Bourguet D (2003) Host-plant-associated genetic differentiation in Northern French populations of the European corn borer. Heredity 90:141–149PubMedCrossRefGoogle Scholar
  38. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084PubMedCrossRefGoogle Scholar
  39. Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15:2673–2685CrossRefGoogle Scholar
  40. Michalakis Y, Excoffier L (1996) A genetic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064PubMedGoogle Scholar
  41. Muraya MM, Sagnard F, Parzies HK (2010) Investigation of recent populations bottlenecks in Kenyan wild sorghum populations (Sorghum bicolor (L.) Moench ssp. verticilliflorum (Steud.) De Wet) based on microsatellite diversity and genetic disequilibria. Genet Resour Crop Evol 57:995–1005CrossRefGoogle Scholar
  42. Mutegi E, Sagnard F, Muraya M, Kanyenji B, Rono B, Mwongera C, Marangu C, Kamau J, Parzies H, de Villiers S, Semagn K, Traoré PS, Labuschagne M (2010) Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: implications for conservation and crop-to-wild gene flow. Genet Resour Crop Evol 57:243–253CrossRefGoogle Scholar
  43. Mutegi E, Sagnard F, Semagn K, Deu M, Muraya M, Kanyenji S, de Villiers S, Kiambi D, Herselman L, Labuschagne M (2011) Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor Appl Genet 122:989–1004PubMedCrossRefGoogle Scholar
  44. Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250PubMedGoogle Scholar
  45. Papa R, Acosta J, Delgado-Salinas A, Gepts P (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158PubMedCrossRefGoogle Scholar
  46. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin
  47. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  48. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. Risterucci AM, Grivet L, N’Goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955CrossRefGoogle Scholar
  50. Rousset F (1999) Genetic differentiation within and between two habitats. Genetics 151:397–407PubMedGoogle Scholar
  51. Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62CrossRefGoogle Scholar
  52. Rousset F (2008) GENEPOP’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  53. Sagnard F, Barnaud A, Deu M, Barro C, Luce C, Billot C, Rami JF, Bouchet S, Dembélé D, Pomiès V, Calatayud C, Rivallan R, Joly H, vom Brocke K, Touré A, Chantereau J, Bezançon G, Vaksmann M (2008) Analyse multiéchelle de la diversité génétique des sorghos: compréhension des processus évolutifs pour la conservation in situ. Cah Agric 17(2):114–121Google Scholar
  54. Slatkin M (1995) A measure of population subdivision based on microsatellite allelic frequencies. Genetics 139:457–462PubMedGoogle Scholar
  55. Snowden JD (1936) The cultivated races of sorghum. Adlard, London, pp 1–274Google Scholar
  56. Teshome A, Fahrig L, Torrance JK, Lambert JD, Arnason TJ, Baum BR (1999) Maintenance of sorghum (Sorghum bicolor, Poaceae) landrace diversity by farmers’ selection in Ethiopia. Econ Bot 53:79–88CrossRefGoogle Scholar
  57. Tesso T, Kapran I, Grenier C, Snow A, Sweeney P, Pedersen J, Marx D, Bothma G, Ejeta G (2008) The potential for crop-to-wild gene flow in sorghum in Ethiopia and Niger: a geographic survey. Crop Sci 48:1425–1431CrossRefGoogle Scholar
  58. Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630PubMedCrossRefGoogle Scholar
  59. Zizumbo-Villarreal D, Colunga-Garcia Marin P, Payro de la Cruz E, Delgado-Valerio P, Gepts P (2005) Population structure and evolutionary dynamics of wild–weedy–domesticated complexes of common bean in a Mesoamerican region. Crop Sci 45:1073–1083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fabrice Sagnard
    • 1
    • 2
  • Monique Deu
    • 1
  • Dékoro Dembélé
    • 3
  • Raphaël Leblois
    • 4
  • Lassana Touré
    • 5
  • Mohamed Diakité
    • 6
  • Caroline Calatayud
    • 1
  • Michel Vaksmann
    • 1
    • 5
  • Sophie Bouchet
    • 1
  • Yaya Mallé
    • 3
  • Sabine Togola
    • 3
  • Pierre C. Sibiry Traoré
    • 3
  1. 1.CIRAD, UMR AGAPMontpellierFrance
  2. 2.ICRISAT, co/ILRINairobiKenya
  3. 3.ICRISAT, Station de SamankoBamakoMali
  4. 4.INRA, UMR CBGP (INRA-IRD-CIRAD-Montpellier SupAgro)Montferrier-sur-Lez CedexFrance
  5. 5.IER-SotubaBamakoMali
  6. 6.IRAG, CRA Bordo- Programme CéréalesKankanGuinea

Personalised recommendations