Theoretical and Applied Genetics

, 123:1215 | Cite as

Genetic map of artichoke × wild cardoon: toward a consensus map for Cynara cardunculus

  • Gabriella Sonnante
  • Angela Gatto
  • Anita Morgese
  • Francesco Montemurro
  • Giulio Sarli
  • Emanuela Blanco
  • Domenico Pignone
Original Paper


An integrated consensus linkage map is proposed for globe artichoke. Maternal and paternal genetic maps were constructed on the basis of an F1 progeny derived from crossing an artichoke genotype (Mola) with its progenitor, the wild cardoon (Tolfa), using EST-derived SSRs, genomic SSRs, AFLPs, ten genes, and two morphological traits. For most genes, mainly belonging to the chlorogenic acid pathway, new markers were developed. Five of these were SNP markers analyzed through high-resolution melt technology. From the maternal (Mola) and paternal (Tolfa) maps, an integrated map was obtained, containing 337 molecular and one morphological markers ordered in 17 linkage groups (LGs), linked between Mola and Tolfa. The integrated map covers 1,488.8 cM, with an average distance of 4.4 cM between markers. The map was aligned with already existing maps for artichoke, and 12 LGs were linked via 31 bridge markers. LG numbering has been proposed. A total of 124 EST-SSRs and two genes were mapped here for the first time, providing a framework for the construction of a functional map in artichoke. The establishment of a consensus map represents a necessary condition to plan a complete sequencing of the globe artichoke genome.


Linkage Group Chlorogenic Acid Cetyl Trimethyl Ammonium Bromide Flower Head Globe Artichoke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Giuseppe Sonnante and Donatella Danzi for technical assistance. This work was partially supported by MiPAAF (Ministero delle Politiche Agricole Alimentari e Forestali), project “CarVarVi—Valorizzazione di germoplasma di carciofo attraverso la costituzione varietale ed il risanamento da virus” and by MiPAAF, project “Implementazione nazionale trattato FAO risorse genetiche vegetali”.

Supplementary material

122_2011_1661_MOESM1_ESM.docx (84 kb)
Supplementary material 1 (DOC 84 kb)


  1. Acquadro A, Lanteri S, Scaglione D, Arens P, Vosman B, Portis E (2009) Genetic mapping and annotation of genomic microsatellites isolated from globe artichoke. Theor Appl Genet 118:1573–1587PubMedCrossRefGoogle Scholar
  2. Agarwal R, Mukhtar H (1996) Cancer chemoprevention by polyphenols in green tea and artichoke. Adv Exp Med Biol 401:35–50PubMedCrossRefGoogle Scholar
  3. Azzini E, Bugianesi R, Romano F, Di Venere D, Miccadei S, Durazzo A, Foddai MS, Catasta G, Linsalata V, Maiani G (2007) Absorption and metabolism of bioactive molecules after oral consumption of cooked edible heads of Cynara scolymus L. (cultivar Violetto di Provenza) in human subjects: a pilot study. Br J Nutr 97:963–969PubMedCrossRefGoogle Scholar
  4. Basnizki J, Zohari D (1994) Breeding of seed planted artichoke. Plant Breed Rev 12:253–269Google Scholar
  5. Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize–teosinte backcross resource. Genetics 177:1915–1928PubMedCrossRefGoogle Scholar
  6. Brown JE, Rice-Evans CA (1998) Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Radic Res 29:247–255PubMedCrossRefGoogle Scholar
  7. Cardinali A, Tursi N, Ligorio A, Giuffrida MG, Napolitano L, Caliandro R, Sergio L, Di Venere D, Lattanzio V, Sonnante G (2011) Purification, biochemical characterization and cloning of a new cationic peroxidase isoenzyme from artichoke. Plant Physiol Biochem 49:395–403PubMedCrossRefGoogle Scholar
  8. Chao S, Baysdorfer C, Heredia-Diaz O, Musket T, Xu G, Coe EH (1994) RFLP mapping of partially sequenced leaf cDNA clones in maize. Theor Appl Genet 88:717–721CrossRefGoogle Scholar
  9. Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E (2009) The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biol 9:30PubMedCrossRefGoogle Scholar
  10. De Paolis A, Pignone D, Morgese A, Sonnante G (2008) Characterization and differential expression analysis of artichoke phenylalanine ammonia-lyase coding sequences. Physiol Plant 132:33–43PubMedGoogle Scholar
  11. Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922PubMedGoogle Scholar
  12. Ferreira A, da Silva MF, Silva LDCE, Cruz CD (2006) Estimating the effects of population size and type on the accuracy of genetic maps. Gen Mol Biol 29:187–192CrossRefGoogle Scholar
  13. Foury C (1989) Ressources génétiques et diversification de l’artichaut (Cynara scolymus L). Acta Hortic 242:155–166Google Scholar
  14. Foury C, Aubert S (1977) Observations préliminaires sur la présence et la répartition de pigments anthocyaniques dans un mutant d’artichaut (Cynara scolymus L.) à fleurs blanches. Ann Amélior Plantes 27:603–612Google Scholar
  15. Gadaleta A, Giancaspro A, Giove SL, Zacheo S, Mangini G, Simeone R, Signorile A, Blanco A (2009) Genetic and physical mapping of new EST-derived SSRs on the A and B genome chromosomes of wheat. Theor Appl Genet 118:1015–1025PubMedCrossRefGoogle Scholar
  16. Gebhardt R (1997) Antioxidative and protective properties of extracts from leaves of artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes. Toxicol Appl Pharmacol 144:279–286PubMedCrossRefGoogle Scholar
  17. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotest-cross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  18. Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT (2003) Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 49:396–406PubMedCrossRefGoogle Scholar
  19. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST–SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323PubMedCrossRefGoogle Scholar
  20. Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV (2007) Melting analysis for mutation scanning and genotyping. Clin Chem 53:1544–1548PubMedCrossRefGoogle Scholar
  21. Isemura T, Kaga A, Tomooka N, Shimizu T, Vaughan DA (2010) The genetics of domestication of rice bean, Vigna umbellata. Ann Bot 106:927–944PubMedCrossRefGoogle Scholar
  22. Kaga A, Isemura T, Tomooka N, Vaughan DA (2008) The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178:1013–1036PubMedCrossRefGoogle Scholar
  23. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  24. Kraft K (1997) Artichoke leaf extract. Recent findings reflecting effects on lipid metabolism, liver and gastrointestinal tracts. Phytomedicine 4:369–378Google Scholar
  25. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300-kilobase-interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372PubMedCrossRefGoogle Scholar
  26. Lanteri S, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theor Appl Genet 112:532–1542CrossRefGoogle Scholar
  27. Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet 117:721–728PubMedCrossRefGoogle Scholar
  28. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high resolution melting of small amplicons. Clin Chem 50:1156–1164PubMedCrossRefGoogle Scholar
  29. Mazur BJ, Tingey SV (1995) Genetic mapping and introgression of genes of agronomic importance. Curr Opin Biotechnol 6:175–182CrossRefGoogle Scholar
  30. McDougall B, King PJ, Wu BW, Hostomsky Z, Manfred G, Robinson WE Jr (1998) Dicaffeoylquinic acid and dicaffeoyltartaric acid are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother 42:140–146PubMedGoogle Scholar
  31. Menin B, Comino C, Moglia A, Dolzhenko Y, Portis E, Lanteri S (2010) Identification and mapping of genes related to caffeoylquinic acid synthesis in Cynara cardunculus L. Plant Sci 179:338–347CrossRefGoogle Scholar
  32. Mun JH, Kim DJ, Choi HK, Gish J, Debellé F, Mudge J, Denny R, Endré G, Saurat Oliver, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541–2555PubMedCrossRefGoogle Scholar
  33. Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805PubMedCrossRefGoogle Scholar
  34. Portis E, Mauromicale G, Mauro R, Acquadro A, Scaglione D, Lanteri S (2009) Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus). Theor Appl Genet 120:59–70PubMedCrossRefGoogle Scholar
  35. Pujol B, David P, McKey D (2005) Microevolution in agricultural environments: how a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol Lett 8:138–147CrossRefGoogle Scholar
  36. Riaz S, Krivanek AF, Xu K, A. Walker M (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris X V. arizonica. Theor Appl Genet 113:1317–1329Google Scholar
  37. Rottenberg A, Zohary D (1996) The wild ancestry of the cultivated artichoke. Genet Resour Crop Evol 43:53–58CrossRefGoogle Scholar
  38. Scaglione D, Acquadro A, Portis E, Taylor CA, Lanteri S, Knapp SJ (2009) Ontology and diversity of transcript-associated microsatellites mined from a globe artichoke EST database. BMC Genomics 10:454PubMedCrossRefGoogle Scholar
  39. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  40. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726CrossRefGoogle Scholar
  41. Shimoda H, Ninomiya K, Nishida N, Yoshino T, Morikawa T, Matsuda H, Yoshikawa M (2003) Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. Bioorg Med Chem Lett 13:223–228PubMedCrossRefGoogle Scholar
  42. Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121:731–739PubMedCrossRefGoogle Scholar
  43. Sonnante G, De Paolis A, Lattanzio V, Perrino P (2002) Genetic variation in wild and cultivated artichoke revealed by RAPD markers. Genet Resour Crop Evol 49:247–252CrossRefGoogle Scholar
  44. Sonnante G, Pignone D, Hammer K (2007) The domestication of artichoke and cardoon: from Roman times to the genomic age. Ann Bot 100:1095–1100PubMedCrossRefGoogle Scholar
  45. Sonnante G, Carluccio A, De Paolis A, Pignone D (2008) Identifivation of artichoke SSR markers: molecular variation and patterns of diversity in genetically cohesive taxa and wild allies. Genet Resour Crop Evol 55:1029–1046CrossRefGoogle Scholar
  46. Sonnante G, D’Amore R, Blanco E, Pierri CL, De Palma M, Luo J, Tucci M, Martin C (2010) Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiol 153:1–15CrossRefGoogle Scholar
  47. Spiller M, Linde M, Hibrand-Saint Oyant L, Tsai CJ, Byrne DH, Smulders MJM, Foucher F, Debener T (2011) Towards a unified genetic map for diploid roses. Theor Appl Genet 122:489–500PubMedCrossRefGoogle Scholar
  48. Sraphet S, Boonchanawiwat A, Thanyasiriwat T, Boonseng O, Tabata S, Sasamoto S, Shirasawa K, Isobe S, Lightfoot DA, Tangphatsornruang S, Triwitayakorn K (2011) SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 122:1161–1170. doi: 10.1007/s00122-010-1520-5 Google Scholar
  49. Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11:63–68PubMedCrossRefGoogle Scholar
  50. Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA, Pindo M, Stefanini M, Mank R, Moroldo M, Morgante M, Grando MS, Velasco R (2007) A dense single-nucleotide-polymorphism based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs. Genetics 176:2637–2650PubMedCrossRefGoogle Scholar
  51. van Ooijen JW (2006) JoinMap® 4: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  52. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  53. Wiklund A (1992) The genus Cynara L. (Asteraceae-Cardueae). Bot J Linn Soc 109:75–123CrossRefGoogle Scholar
  54. Wu SB, Tavassolian I, Rabiei G, Hunt P, Wirthensohn M, Gibson JP, Ford CM, Sedgley M (2009) Mapping SNP-anchored genes using high-resolution melting analysis in almond. Mol Genet Genomics 282:273–281PubMedCrossRefGoogle Scholar
  55. Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrlees ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818PubMedCrossRefGoogle Scholar
  56. Zhua XF, Zhanga HX, Lob R (2005) Antifungal activity of Cynara scolymus L. extracts. Fitoterapia 76:108–111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gabriella Sonnante
    • 1
  • Angela Gatto
    • 1
  • Anita Morgese
    • 1
  • Francesco Montemurro
    • 1
  • Giulio Sarli
    • 1
  • Emanuela Blanco
    • 1
  • Domenico Pignone
    • 1
  1. 1.Institute of Plant GeneticsNational Research CouncilBariItaly

Personalised recommendations