Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci


Twenty-two landrace-derived inbred lines from the Spanish Barley Core Collection (SBCC) were found to display high levels of resistance to a panel of 27 isolates of the fungus Blumeria graminis that exhibit a wide variety of virulences. Among these lines, SBCC145 showed high overall resistance and a distinctive spectrum of resistance compared with the other lines. Against this background, the main goal of the present work was to investigate the genetic basis underlying such resistance using a doubled haploid population derived from a cross between SBCC145 and the elite spring cultivar Beatrix. The population was genotyped with the 1,536-SNP Illumina GoldenGate Oligonucleotide Pool Assay (Barley OPA-1 or BOPA1 for short), whereas phenotypic analysis was performed using two B. graminis isolates. A major quantitative trait locus (QTL) for resistance to both isolates was identified on the long arm of chromosome 6H (6HL) and accounted for ca. 60% of the phenotypic variance. Depending on the B. graminis isolate tested, three other minor QTLs were detected on chromosomes 2H and 7H, which explained less than 5% of the phenotypic variation each. In all cases, the alleles for resistance derived from the Spanish parent SBCC145. The position, the magnitude of the effect observed and the proportion of phenotypic variation accounted for by the QTL on 6HL suggest this is a newly identified locus for broad-based resistance to powdery mildew.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Aghnoum R, Niks RE (2011) Transgressive segregation for very low and high levels of basal resistance to powdery mildew in barley. J Plant Physiol 168:45–50

  2. Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes. Mol Plant Microbe Interact 23:91–102

  3. Ayliffe MA, Collins NC, Ellis JG, Pryor A (2000) The maize rp1 rust resistance gene identifies homologues in barley that have been subjected to diversifying selection. Theor Appl Genet 100:1144–1154

  4. Backes G, Graner B, Foroughi-Wehr G, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90:294–302

  5. Backes G, Madsen LH, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A (2003) Localization of genes for resistance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line. Theor Appl Genet 106:353–362

  6. Brown JKM, Jørgensen JH (1991) A catalogue of mildew resistance genes in European barley varieties. In: Jørgensen JH (ed) Integrated control of cereal mildews: virulence patterns and their change. Risø National Laboratory, Roskilde, Denmark, pp 263–286

  7. Brueggeman R, Rostoks N, Kurdna D, Kilian A, Han F, Chen J, Druka A, Steffenson BJ, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

  8. Bulgarelli D, Collins NC, Tacconi G, Dellaglio E, Brueggeman R, Kleinhofs A, Stanca AM, Valè G (2004) High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theor Appl Genet 108:1401–1408

  9. Bundessortenamt (2009) Ergänzende feststellungen zur anfälligkeit für krankheiten und schädlinge. In: Beschreibende Sortenliste für Getreide, mais, ölfrüchte, leguminosen, hackfrüchte, pp 44–49

  10. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

  11. Cockram J, White J, Zuluaga D, Comadran J, Macaulay M, Liu Z, Kearsey M, Werner P, Harrap D, Tapsell C, Liu H, Stein N, Schulte D, Steurnagel B, Marshall DF, Thomas WTB, Ramsay L, Mackay I, Balding DJ, the AGOUEB Consortium, Waugh R, O’Sullivan DM (2010) Genome-wide association mapping of morphological traits to candidate gene resolution in the un-sequenced barley genome. Proc Natl Acad Sci USA 107:21611–21616

  12. Comadran J, Thomas WTB, van Eeuwijk F, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hackett CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

  13. Czembor JH (1999) Resistance to powdery mildew in barley landraces from Tunisia. Plant Breed Seed Sci 43:49–65

  14. Czembor JH (2000) Resistance to powdery mildew in populations of barley landraces from Morocco. Genet Res Crop Evol 47:439–450

  15. Drader T, Johnson K, Brueggeman R, Kudrna D, Kleinhofs A (2009) Genetic and physical mapping of a high recombination region on chromosome 7H(1) in barley. Theor Appl Genet 118:811–820

  16. Dreiseitl A, Bockelman HE (2003) Sources of powdery mildew resistance in a wild barley collection. Genet Resour Crop Evol 50:345–350

  17. Falak I, Falk DE, Tinker NA, Mather DE (1999) Resistance to powdery mildew in a doubled-haploid barley population and its association with marker loci. Euphytica 107:185–192

  18. Fischbeck G (1992) Barley cultivar development in Europe. Success in the past and possible changes in the future. In: Munk L (ed) Proceedings of 6th international barley genetics, vol II. Munksgaard Int Publ Ltd. Copenhagen, pp 887–901

  19. Fischbeck G (2003) Diversification through breeding. In: von Bothmer R, van Hintum T, Knuepffer H, Sato K (eds) Diversity in barley. Elsevier, Amsterdam, pp 29–52

  20. Flor HH (1971) Current status of the gene-for-gene concept. Ann Rev Phytopathol 9:275–296

  21. Friedt W, Ordon F (2007) Molecular markers for gene pyramiding and disease resistance breeding in barley. In: Varshney RV, Tuberosa R (eds) Genomics-assisted crop improvement, vol 2: genomics application in crops. Springer, Netherlands, pp 81–101

  22. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

  23. Heun M (1992) Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome 35:1019–1025

  24. Huxley A (2005) Green inheritance. University of California Press, Berkeley and Los Angeles, California

  25. Igartua E, Gracia MP, Lasa JM, Medina B, Molina-Cano JL, Montoya JL, Romagosa I (1998) The Spanish barley core collection. Genet Resour Crop Evol 45:475–481

  26. Jahoor A (1986) Mehltauresistenz israelischer Wildgersten—Resistenzspektrum, Vererbung und Lokalisierung. Dissertation, Technische Universität München, Freising-Weihenstephan

  27. Jahoor A, Fischbeck G (1993) Identification of new genes for mildew resistance of barley at the Mla locus in lines derived from Hordeum spontaneum. Plant Breed 110:116–122

  28. Jansen R, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

  29. Johrde A, Schweizer P (2008) A class III peroxidase specifically expressed in pathogen-attacked barley epidermis contributes to basal resistance. Mol Plant Pathol 9:687–696

  30. Jørgensen JH (1994) Genetics of powdery mildew resistance in barley. Critic Rev Plant Sci 13:97–119

  31. Kølster P, Munk L, Stølen O, Løhde J (1986) Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci 26:903–907

  32. Lasa JM (2008) Spanish Barley Core Collection. Monografías INIA: Serie Agrícola, n. 25. Instituto Nacional de Tecnología Agraria y Alimentaria, Madrid

  33. Li HB, Zhou MX (2011) Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations. Mol Breeding 27:479–490

  34. Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTL for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

  35. Ordon F (2009) Coordinator's report: disease and pest resistance genes. In: Udda Lundqvist (ed) Barley genetics newsletter 39, pp 58–69

  36. Řepková J, Dreiseitl A, Lízal P, Kyjovská Z, Teturová K, Psotková R, Jahoor A (2006) Identification of resistance genes against powdery mildew in four accessions of Hordeum vulgare ssp spontaneum. Euphytica 151:23–30

  37. Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breeding 26:243–256

  38. Saghai Maroof MA, Blyashev RB, Zhang Q (1994) Molecular marker analysis of powdery mildew resistance in barley. Theor Appl Genet 88:733–740

  39. Sato K, Takeda K (2009) An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theor Appl Genet 119:613–619

  40. Schönfeld M, Ragni A, Fischbeck G, Jahoor A (1996) RFLP mapping of three new loci for resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) in barley. Theor Appl Genet 93:48–56

  41. Shtaya MJY, Marcel TC, Sillero JC, Niks RE, Rubiales D (2006) Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica 151:421–429

  42. Shtaya MJY, Sillero JC, Flath K, Pickering R, Rubiales D (2007) The resistance of leaf rust and powdery mildew of recombinant lines of barley (Hordeum vulgare L.) derived from H. vulgare × H. bulbosum crosses. Plant Breed 126:259–267

  43. Silvar C, Casas AM, Kopahnke D, Habekuß A, Schweizer G, Gracia MP, Lasa JM, Ciudad FJ, Molina-Cano JL, Igartua E, Ordon F (2010a) Screening the Spanish barley core collection for disease resistance. Plant Breed 129:45–52

  44. Silvar C, Dhif H, Igartua E, Kopahnke D, Gracia MP, Lasa JM, Ordon F, Casas AM (2010b) Identification of quantitative trait loci for resistance to powdery mildew in a Spanish barley landrace. Mol Breed 25:581–592

  45. Silvar C, Flath K, Kopahnke D, Gracia MP, Lasa JM, Casas AM, Igartua E, Ordon F (2011a) Analysis of powdery mildew resistance in the Spanish barley core collection. Plant Breed 130:195–202

  46. Silvar C, Perovic D, Casas AM, Igartua E, Ordon F (2011b) Development of a cost-effective pyrosequencing approach for SNP genotyping in barley. Plant Breed 130:394–397

  47. Szűcs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2:134–140

  48. Trujillo M, Troeger M, Niks RE, Kogel KH, Hückelhoven R (2004) Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis. Mol Plant Pathol 5:389–396

  49. van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen, Netherlands

  50. van Ooijen JW (2006) JoinMap 4, software for the calculation of genetics linkage maps in experimental populations. Kyazma, BV, Wageningen, Netherlands

  51. von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

  52. Wang Z, Taramino G, Yang D, Liu G, Tingey SV, Miao GH, Wang GL (2001) Rice ESTs with disease-resistance gene- or defense response gene-like sequences mapped to regions containing major resistance genes or QTL. Mol Genet Genomics 265:302–310

  53. Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54:1065–1079

  54. Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208

  55. Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45:2563–2572

Download references


This work was funded by the Spanish Ministry of Science and Innovation (projects GEN2006-28560-E, AGL2007-63625 and Plant-KBBE ExpResBar, EUI2009-04075) and co-funded by the European Regional Development Fund. CS holds an I3P postdoctoral contract from CSIC. CS was supported by mobility fellowships from the Deutsche Forschungsgemeinschaft (DFG), CSIC, Fundación Caja Inmaculada and COST Action FA0604 (Tritigen).

Author information

Correspondence to E. Igartua.

Additional information

Communicated by P. Hayes.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silvar, C., Casas, A.M., Igartua, E. et al. Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theor Appl Genet 123, 1019 (2011). https://doi.org/10.1007/s00122-011-1644-2

Download citation


  • Quantitative Trait Locus
  • Powdery Mildew
  • Doubled Haploid
  • Quantitative Trait Locus Analysis
  • Doubled Haploid Line