Advertisement

Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa

  • Congcong Jiang
  • Nirala Ramchiary
  • Yongbiao Ma
  • Mina Jin
  • Ji Feng
  • Ruiyuan Li
  • Hao Wang
  • Yan Long
  • Su Ryun Choi
  • Chunyu Zhang
  • Wallace A. Cowling
  • Beom Seok Park
  • Yong Pyo Lim
  • Jinling Meng
Original Paper

Abstract

Brassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC). The complete genomic sequence of the Brassica A genome will be available soon from the B. rapa genome sequencing project, but it is not clear how informative the A genome sequence in B. rapa (Ar) will be for predicting the structure and function of the A subgenome in the allotetraploid Brassica species B. napus (An). In this paper, we report the results of structural and functional comparative mapping between the A subgenomes of B. napus and B. rapa based on genetic maps that were anchored with bacterial artificial chromosomes (BACs)-sequence of B. rapa. We identified segmental conservation that represented by syntenic blocks in over one third of the A genome; meanwhile, comparative mapping of quantitative trait loci for seed quality traits identified a dozen homologous regions with conserved function in the A genome of the two species. However, several genomic rearrangement events, such as inversions, intra- and inter-chromosomal translocations, were also observed, covering totally at least 5% of the A genome, between allotetraploid B. napus and diploid B. rapa. Based on these results, the A genomes of B. rapa and B. napus are mostly functionally conserved, but caution will be necessary in applying the full sequence data from B. rapa to the B. napus as a result of genomic rearrangements in the A genome between the two species.

Keywords

Linkage Group Bacterial Artificial Chromosome Simple Sequence Repeat Marker Genomic Rearrangement Common Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Basic Research and Development Program (2006CB101600), People’s Republic of China; the Technology Development Program for Agricultural and Forestry, Ministry for Food, Agriculture, Forestry, and Fisheries (607003-05-2-SB110), and the Rural Development Administration (BioGreen 21 Program 04-1-12-2 and PJ0066912010), Republic of Korea.

Supplementary material

122_2011_1637_MOESM1_ESM.pdf (264 kb)
Online Resource 1 ESM_1 The B. rapa and B. napus genetic maps used in this study. (PDF 264 kb)
122_2011_1637_MOESM2_ESM.pdf (21 kb)
Online Resource 2 ESM_2 Secondary common markers inferred from the conserved Brassicaceae building blocks between homologous linkage groups of B. napus TN and B. rapa CK genetic map. (PDF 20 kb)
122_2011_1637_MOESM3_ESM.pdf (45 kb)
Online Resource 3 ESM_3 The QTL related to seed quality traits in B. rapa and B. napus. (PDF 44 kb)

References

  1. Cheung F, Trick M, Drou N, Lim YP, Park J-Y, Kwon S-J, Kim J-A, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928PubMedCrossRefGoogle Scholar
  2. Cho K, O’Neill CM, Kwon SJ, Yang TJ, Smooker AM, Fraser F, Bancroft I (2009) Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci. Plant J 61:591–599PubMedCrossRefGoogle Scholar
  3. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792PubMedCrossRefGoogle Scholar
  4. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  5. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417PubMedCrossRefGoogle Scholar
  6. Gaeta RT, Pires JC (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28PubMedCrossRefGoogle Scholar
  7. Gómez-Campo C, Prakash S (1999) Origin and domestication. In: Gómez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 33–58Google Scholar
  8. Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460PubMedCrossRefGoogle Scholar
  9. Inaba R, Nishio T (2002) Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1. Theor Appl Genet 105:1159–1165PubMedCrossRefGoogle Scholar
  10. Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chèvre AM (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653PubMedGoogle Scholar
  11. Kim H, Choi SR, Bae J, Hong CP, Lee SY, Hossain MJ, Van Nguyen D, Jin M, Park BS, Bang JW, Bancroft I, Lim YP (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genom 10:432CrossRefGoogle Scholar
  12. Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39PubMedCrossRefGoogle Scholar
  13. Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498PubMedGoogle Scholar
  14. Kowalski SP, Lan TH, Feldmann KA, Paterson AH (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138:499–510PubMedGoogle Scholar
  15. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  16. Lan TH, DelMonte TA, Reischmann KP, Hyman J, Kowalski SP, McFerson J, Kresovich S, Paterson AH (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10:776–788PubMedCrossRefGoogle Scholar
  17. Laurie DA, Devos KM (2002) Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Mol Biol 48:729–740PubMedCrossRefGoogle Scholar
  18. Leflon M, Brun H, Eber F, Delourme R, Lucas M, Vallée P, Ermel M, Balesdent M, Chèvre A (2007) Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus. Theor Appl Genet 115:897–906PubMedCrossRefGoogle Scholar
  19. Li M, Qian W, Meng J, Li Z (2004) Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res 12:417–426PubMedCrossRefGoogle Scholar
  20. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444PubMedGoogle Scholar
  21. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164:359–372PubMedGoogle Scholar
  22. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525PubMedCrossRefGoogle Scholar
  23. Mun JH, Kwon SJ, Yang TJ, Kim HS, Choi BS, Baek S, Kim JS, Jin M, Kim JA, Lim MH, Lee SI, Kim HI, Kim H, Lim YP, Park BS (2008) The first generation of a BAC-based physical map of Brassica rapa. BMC Genom 9:280CrossRefGoogle Scholar
  24. Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA, Lim MH, Kim JS, Baek S, Choi BS, Yu HJ, Kim DS, Kim N, Lim KB, Lee SI, Hahn JH, Lim YP, Bancroft I, Park BS (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111PubMedCrossRefGoogle Scholar
  25. Mun JH, Kwon SJ, Seol YJ, Kim JA, Jin M, Kim JS, Lim MH, Lee SI, Hong JK, Park TH, Lee SC, Kim BJ, Seo MS, Baek S, Lee MJ, Shin JY, Hahn JH, Hwang YJ, Lim KB, Park JY, Lee J, Yang TJ, Yu HJ, Choi IY, Choi BS, Choi SR, Ramchiary N, Lim YP, Fraser F, Drou N, Soumpourou E, Trick M, Bancroft I, Sharpe AG, Parkin IA, Batley J, Edwards D, Park BS (2010) Sequence and structure of Brassica rapa chromosome A3. Genome Biol 11:R94PubMedCrossRefGoogle Scholar
  26. Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IA, Parker JS, Lydiate DJ (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577PubMedGoogle Scholar
  27. Panjabi P, Jagannath A, Bisht N, Padmaja KL, Sharma S, Gupta V, Pradhan A, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genom 9:113CrossRefGoogle Scholar
  28. Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45PubMedCrossRefGoogle Scholar
  29. Park J, Koo D, Hong C, Lee S, Jeon J, Yun P, Park B, Kim H, Bang J, Plaha P, Bancroft I, Lim Y (2005) Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol Genet Genom 274:579–588CrossRefGoogle Scholar
  30. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781PubMedCrossRefGoogle Scholar
  31. Qian W, Chen X, Fu D, Zou J, Meng J (2005) Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet 110:1187–1194PubMedCrossRefGoogle Scholar
  32. Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C (2006) Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet 113:49–54PubMedCrossRefGoogle Scholar
  33. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80PubMedCrossRefGoogle Scholar
  34. Rana D, van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733PubMedCrossRefGoogle Scholar
  35. Sadowski J, Gaubier P, Delseny M, Quiros CF (1996) Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Gen Genet 251:298–306PubMedGoogle Scholar
  36. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542PubMedCrossRefGoogle Scholar
  37. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861PubMedCrossRefGoogle Scholar
  38. Song KM, Osborn TC (1992) Polyphyletic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analyses. Genome 35:992–1001CrossRefGoogle Scholar
  39. Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723PubMedCrossRefGoogle Scholar
  40. Suwabe K, Morgan C, Bancroft I (2008) Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome 51:169–176PubMedCrossRefGoogle Scholar
  41. Teutonico RA, Osborn TC (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet 89:885–894CrossRefGoogle Scholar
  42. Toroser D, Thormann CE, Osborn TC, Mithen R (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L). Theor Appl Genet 91:802–808CrossRefGoogle Scholar
  43. Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359PubMedCrossRefGoogle Scholar
  44. Trick M, Kwon SJ, Choi S, Fraser F, Soumpourou E, Drou N, Wang Z, Lee S, Yang TJ, Mun JH, Paterson AH, Town CD, Pires JC, Lim YP, Park BS, Bancroft I (2009) Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics 10:539PubMedCrossRefGoogle Scholar
  45. U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452Google Scholar
  46. Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979PubMedCrossRefGoogle Scholar
  47. Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204CrossRefGoogle Scholar
  48. Van Ooijen JW (2006) Joinmap4, software for calculation of genetic linkage maps in experimental populations. Kyazma B.V, WageningenGoogle Scholar
  49. Wang S, Basten CJ, Gaffney P, Zeng ZB (2001–2005) Windows QTL Cartographer version 2.5. North Carolina State University, Bioinformatics Research Center, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
  50. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530PubMedCrossRefGoogle Scholar
  51. Xu J, Qian X, Wang X, Li R, Cheng X, Yang Y, Fu J, Zhang S, King GJ, Wu J, Liu K (2010) Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genom 11:594CrossRefGoogle Scholar
  52. Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604PubMedCrossRefGoogle Scholar
  53. Yu F, Lydiate DJ, Rimmer SR (2008) Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome 51:64–72PubMedCrossRefGoogle Scholar
  54. Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, Tu J, Fu T, Meng J (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120:283–290PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Congcong Jiang
    • 1
  • Nirala Ramchiary
    • 2
  • Yongbiao Ma
    • 1
  • Mina Jin
    • 3
  • Ji Feng
    • 1
  • Ruiyuan Li
    • 1
  • Hao Wang
    • 4
  • Yan Long
    • 1
  • Su Ryun Choi
    • 2
  • Chunyu Zhang
    • 1
  • Wallace A. Cowling
    • 5
  • Beom Seok Park
    • 3
  • Yong Pyo Lim
    • 2
  • Jinling Meng
    • 1
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  2. 2.Molecular Genetics and Genomics Lab, Department of HorticultureChungnam National UniversityDaejeonRepublic of Korea
  3. 3.Genomics DivisionNational Academy of Agricultural Science, Rural Development AdministrationSuwonRepublic of Korea
  4. 4.Hybrid Rapeseed Research Center of ShaanxiDaliChina
  5. 5.The UWA Institute of Agriculture, c/o School of Plant Biology M084, The University of Western AustraliaCrawleyAustralia

Personalised recommendations