Advertisement

Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.)

  • Haodong Chen
  • Hang He
  • Yanjiao Zou
  • Wei Chen
  • Renbo Yu
  • Xia Liu
  • Yang Yang
  • Yong-Ming Gao
  • Jian-Long Xu
  • Liu-Min Fan
  • Yi Li
  • Zhi-Kang Li
  • Xing Wang Deng
Original Paper

Abstract

Single nucleotide polymorphisms (SNPs) are the most abundant DNA markers in plant genomes. In this study, based on 54,465 SNPs between the genomes of two Indica varieties, Minghui 63 (MH63) and Zhenshan 97 (ZS97) and additional 20,705 SNPs between the MH63 and Nipponbare genomes, we identified and confirmed 1,633 well-distributed SNPs by PCR and Sanger sequencing. From these, a set of 372 SNPs were further selected to analyze the patterns of genetic diversity in 300 representative rice inbred lines from 22 rice growing countries worldwide. Using this set of SNPs, we were able to uncover the well-known IndicaJaponica subspecific differentiation and geographic differentiations within Indica and Japonica. Furthermore, our SNP results revealed some common and contrasting patterns of the haplotype diversity along different rice chromosomes in the Indica and Japonica accessions, which suggest different evolutionary forces possibly acting in specific regions of the rice genome during domestication and evolution of rice. Our results demonstrated that this set of SNPs can be used as anchor SNPs for large scale genotyping in rice molecular breeding research involving IndicaJaponica and Indica–Indica crosses.

Keywords

Rice Genome Polymorphism Information Content Rice Accession East Asia Allele Frequency Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Drs. Qifa Zhang and Weibo Xie for sharing the SNP information between MH63 and ZS97 before their publication. We thank Hao Chen, Li Wang, Qiushi Huang, and Tiantian Zhu for their assistances in SNP verification. We appreciate Dr. Judy Lee’s help for manuscript editing. This work was supported by grants from the Bill and Melinda Gates foundation (51587-5), the Ministry of Science and Technology of China (2009DFB30030 and 2010AA101806), the Ministry of Agriculture of China (2008ZX08012-005, 2009ZX08012-021B, 2011-G2B and 2006-G51) and the Generation Challenge Program (#12) of CGIAR.

Supplementary material

122_2011_1633_MOESM1_ESM.xls (81 kb)
Table S1 (XLS 81 kb)
122_2011_1633_MOESM2_ESM.xls (28 kb)
Table S2 (XLS 28 kb)
122_2011_1633_MOESM3_ESM.xls (28 kb)
Table S3 (XLS 28 kb)
122_2011_1633_MOESM4_ESM.xls (88 kb)
Table S4 (XLS 88 kb)
122_2011_1633_MOESM5_ESM.xls (154 kb)
Table S5 (XLS 153 kb)
122_2011_1633_MOESM6_ESM.jpg (2.8 mb)
Fig. S1 (JPG 2916 kb)
122_2011_1633_MOESM7_ESM.tiff (278 kb)
Fig. S2 Three separate clusters of the 300 parental rice lines of the international rice molecular breeding network revealed by a representative SNP (TIFF 278 kb)
122_2011_1633_MOESM8_ESM.jpg (1.6 mb)
Fig. S3 (JPG 1617 kb)
122_2011_1633_MOESM9_ESM.emf (617 kb)
Fig. S4 Classification of the 300 parental rice lines of the international rice molecular breeding network revealed by a neighbor-joining tree based on 258 SNP data (EMF 617 kb)

References

  1. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517PubMedCrossRefGoogle Scholar
  2. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  3. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  4. Chi KR (2008) The year of sequencing. Nat Methods 5:11–14PubMedCrossRefGoogle Scholar
  5. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868PubMedCrossRefGoogle Scholar
  6. Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Wickham Garcia E, Lebruska LL, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73PubMedCrossRefGoogle Scholar
  7. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819PubMedCrossRefGoogle Scholar
  8. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638PubMedCrossRefGoogle Scholar
  9. Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30CrossRefGoogle Scholar
  10. Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D, Fox P, Glasscock JI, Hickenbotham M, Huang W, Magrini VJ, Richt RJ, Sander SN, Stewart DA, Stromberg M, Tsung EF, Wylie T, Schedl T, Wilson RK, Mardis ER (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188PubMedCrossRefGoogle Scholar
  11. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967PubMedCrossRefGoogle Scholar
  12. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  13. Li ZK, Rutger JN (2000) Geographic distribution and multilocus organization of isozyme variation of rice (Oryza sativa L). Theor Appl Genet 101:379–387CrossRefGoogle Scholar
  14. Lu BR, Zheng KL, Qian HR, Zhuang JY (2002) Genetic differentiation of wild relatives of rice as assessed by RFLP analysis. Theor Appl Genet 106:101–106PubMedGoogle Scholar
  15. Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Parentoni SN, Shah T, Rong T, Crouch JH, Xu Y (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115PubMedCrossRefGoogle Scholar
  16. McCouch SR, Zhao K, Wright M, Tung C, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML, McClung A, Eizenga G, Bustamante C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535CrossRefGoogle Scholar
  17. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740PubMedCrossRefGoogle Scholar
  18. McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Ratsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278PubMedCrossRefGoogle Scholar
  19. Monna L, Ohta R, Masuda H, Koike A, Minobe Y (2006) Genome-wide searching of single-nucleotide polymorphisms among eight distantly and closely related rice cultivars (Oryza sativa L.) and a wild accession (Oryza rufipogon Griff.). DNA Res 13:43–51PubMedCrossRefGoogle Scholar
  20. Moragues M, Comadran J, Waugh R, Milne I, Flavell AJ, Russell JR (2010) Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data. Theor Appl Genet 120:1525–1534PubMedCrossRefGoogle Scholar
  21. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202PubMedCrossRefGoogle Scholar
  22. Ni J, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci 42:601–607CrossRefGoogle Scholar
  23. Olufowote JO, Xu Y, Chen X, Park WD, Beachell HM, Dilday RH, Goto M, McCouch SR (1997) Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome 40:370–378PubMedCrossRefGoogle Scholar
  24. Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033PubMedCrossRefGoogle Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  26. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18PubMedCrossRefGoogle Scholar
  27. Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205PubMedCrossRefGoogle Scholar
  28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  29. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526PubMedGoogle Scholar
  30. Tung CW, Zhao K, Wright MK, Ali ML, Jung J, Kimball J, Tyagi W, Thomson MJ, McNally K, Leung H, Kim H, Ahn SN, Reynolds A, Scheffler B, Eizenga G, McClung A, Bustamante C, McCouch SR (2010) Development of a research platform for dissecting phenotype–genotype associations in rice (Oryza spp.). Rice 3:205–217CrossRefGoogle Scholar
  31. Wang ZY, Second G, Tanksley SD (1992) Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor Appl Genet 83:565–581CrossRefGoogle Scholar
  32. Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222PubMedCrossRefGoogle Scholar
  33. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107:10578–10583PubMedCrossRefGoogle Scholar
  34. Yamamoto T, Nagasaki H, Yonemaru J, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267PubMedCrossRefGoogle Scholar
  35. Yu J, He S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y et al (2002) A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  36. Yu SB, Xu WJ, Vijayakumar CHM, Ali J, Fu BY, Xu JL, Marghirang R, Domingo J, Jiang YZ, Aquino C, Virmani SS, Li ZK (2003) Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program. Theor Appl Genet 108(1):131–140PubMedCrossRefGoogle Scholar
  37. Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci USA 104:16402–16409PubMedCrossRefGoogle Scholar
  38. Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali ML, Tung CW, Reynolds A, Bustamante CD, McCouch SR (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5:e10780PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Haodong Chen
    • 1
  • Hang He
    • 1
  • Yanjiao Zou
    • 1
  • Wei Chen
    • 1
  • Renbo Yu
    • 1
  • Xia Liu
    • 1
  • Yang Yang
    • 1
  • Yong-Ming Gao
    • 2
  • Jian-Long Xu
    • 2
  • Liu-Min Fan
    • 1
  • Yi Li
    • 1
  • Zhi-Kang Li
    • 2
  • Xing Wang Deng
    • 1
  1. 1.Peking-Yale Joint Center for Plant Molecular Genetics and Agro-biotechnology, State Key Laboratory of Protein and Plant Gene Research, College of Life SciencesPeking UniversityBeijingChina
  2. 2.Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic ImprovementChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations