Theoretical and Applied Genetics

, Volume 123, Issue 4, pp 615–623 | Cite as

A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew

  • R. Mago
  • L. Tabe
  • R. A. McIntosh
  • Z. Pretorius
  • R. Kota
  • E. Paux
  • T. Wicker
  • J. Breen
  • E. S. Lagudah
  • J. G. Ellis
  • W. SpielmeyerEmail author
Original Paper


Sr2 is the only known durable, race non-specific adult plant stem rust resistance gene in wheat. The Sr2 gene was shown to be tightly linked to the leaf rust resistance gene Lr27 and to powdery mildew resistance. An analysis of recombinants and mutants suggests that a single gene on chromosome arm 3BS may be responsible for resistance to these three fungal pathogens. The resistance functions of the Sr2 locus are compared and contrasted with those of the adult plant resistance gene Lr34.


Powdery Mildew Leaf Rust Rust Resistance Stem Rust Chinese Spring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Xiaodi Xia and Sutha Chandramohan for their excellent technical assistance. We acknowledge support from Grains Research Development Corporation (GRDC) which is co-funding rust research at CSIRO. We thank Dr Jaroslav Dolezel, Dr Hana Simkova and Dr Catherine Feuillet, who facilitated early access to the chromosome 3B-specific BAC library and 3B physical map information, and Prof Rudi Appels for coordinating the sequencing and annotation of the BAC clones.


  1. Breen J, Li D, Dunn DS, Bekes F, Kong X, Zhang J, Jia J, Wicker T, Mago R, Ma W, Bellgard M, Appels R (2010) Wheat beta-expansin (EXPB11) genes: Identification of the expressed gene on chromosome 3BS carrying a pollen allergen domain. BMC Plant Biol 10:99PubMedCrossRefGoogle Scholar
  2. Brown GN (1997) The inheritance and expression of leaf chlorosis associated with gene Sr2 for adult plant resistance to wheat stem rust. Euphytica 95:67–71CrossRefGoogle Scholar
  3. Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier MC, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C (2010) Megabase level sequencing reveals contrasted organisation and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701PubMedCrossRefGoogle Scholar
  4. Dyck PL (1977) Genetics of leaf rust reactions in three introductions of common wheat. Can J Genet Cytol 19:711–716Google Scholar
  5. Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469CrossRefGoogle Scholar
  6. Dyck PL, Samborski DJ (1982) The inheritance of resistance to Puccinia recondita in a group of common wheat cultivars. Can J Genet Cytol 24:273–283Google Scholar
  7. German SE, Kolmer JA (1992) Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat. Theor Appl Genet 84:97–105CrossRefGoogle Scholar
  8. Hare RA, McIntosh RA (1979) Genetic and cytogenetic studies of durable adult-plant resistances in Hope and related cultivars to wheat rusts. Z Planzenzücht 83:350–367Google Scholar
  9. Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249PubMedCrossRefGoogle Scholar
  10. Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091PubMedCrossRefGoogle Scholar
  11. Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott DR (2011) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122:143–149PubMedCrossRefGoogle Scholar
  12. Kolmer JA, Garvin DF, Jin Y (2011) Expression of a Thatcher wheat adult plant stem rust resistance QTL on chromosome 2BL is enhanced by Lr34. Crop Sci 51:526–533Google Scholar
  13. Kota R, Spielmeyer W, McIntosh RA, Lagudah ES (2006) Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.). Theor Appl Genet 112:492–499PubMedCrossRefGoogle Scholar
  14. Krattinger SG, Lagudah ES, Spielmeyer W, Singh R, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363PubMedCrossRefGoogle Scholar
  15. Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166PubMedCrossRefGoogle Scholar
  16. Mago R, Spielmeyer W, Lawrence GJ, Ellis JG, Pryor A (2004) Resistance genes for rye stem rust (SrR) and barley powdery mildew (Mla) are located in syntenic regions on short arm of chromosome 1. Genome 47:112–121PubMedCrossRefGoogle Scholar
  17. Mago R, Simkova H, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Dolezel J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744PubMedCrossRefGoogle Scholar
  18. McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034Google Scholar
  19. McFadden ES (1939) Brown necrosis, a discolouration associated with rust infection in certain rust resistant wheats. J Agric Res 58:805–819Google Scholar
  20. McIntosh RA, Park RF, Wellings CR (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, AustraliaGoogle Scholar
  21. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of 1 Gigabase bread wheat chromosome 3B. Science 322:101–104PubMedCrossRefGoogle Scholar
  22. Pretorius ZA, Pienaar L, Prins R (2007) Greenhouse and field assessment of adult plant resistance in wheat to Puccinia striiformis f. Sp. Tritici. Aust Plant Pathol 36:552–559CrossRefGoogle Scholar
  23. Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tušková R, Číhalíková J, Vrána J, Šimková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Doležel J, Chalhoub B (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968PubMedCrossRefGoogle Scholar
  24. Singh RP, McIntosh RA (1984a) Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum I. Genetic and linkage studies. Can J Genet Cytol 26:723–735Google Scholar
  25. Singh RP, McIntosh RA (1984b) Complementary genes for reaction to Puccinia recondite tritici in Triticum aestivum II. Cytogenetic studies. Can J Genet Cytol 26:736–742Google Scholar
  26. Singh D, Park RF, McIntosh RA (1999) Genetic relationship between the adult plant resistance gene Lr12 and the complementary gene Lr31 for seedling resistance to leaf rust in common wheat. Plant Pathol 48:567–573CrossRefGoogle Scholar
  27. Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance is associated with durable leaf rust and stripe rust resistance genes Lr34/Yr18 and maps to a single locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735PubMedCrossRefGoogle Scholar
  28. Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R, Lagudah ES (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet 116:481–490PubMedCrossRefGoogle Scholar
  29. Stakman EC, Stewart DM, Loegring WQ (1962) Identification of physiologic races of Puccinia graminis var tritici. Agricultural Research Service E617 United States Department of Agriculture, WashingtonGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • R. Mago
    • 1
  • L. Tabe
    • 1
  • R. A. McIntosh
    • 2
  • Z. Pretorius
    • 5
  • R. Kota
    • 1
  • E. Paux
    • 4
  • T. Wicker
    • 3
  • J. Breen
    • 6
  • E. S. Lagudah
    • 1
  • J. G. Ellis
    • 1
  • W. Spielmeyer
    • 1
    Email author
  1. 1.CSIRO Plant IndustryCanberraAustralia
  2. 2.University of Sydney Plant Breeding Institute CobbittyCamdenAustralia
  3. 3.Institute of Plant BiologyUniversity of ZurichZurichSwitzerland
  4. 4.Institut National de la Recherche Agronomique, Universite Blaise Pascal, Unite Mixte de Recherche 1095 Genetics Diversity and Ecophysiology of CerealsClermont-FerrandFrance
  5. 5.Department of Plant SciencesUniversity of the Free StateBloemfonteinSouth Africa
  6. 6.Centre for Comparative GenomicsMurdoch UniversityMurdochWestern Australia

Personalised recommendations