Advertisement

Theoretical and Applied Genetics

, Volume 123, Issue 3, pp 369–382 | Cite as

QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.)

  • Vibeke Alm
  • Carlos S. Busso
  • Åshild Ergon
  • Heidi Rudi
  • Arild Larsen
  • Michael W. Humphreys
  • Odd Arne RognliEmail author
Original Paper

Abstract

Quantitative trait loci (QTLs) for frost and drought tolerance, and winter survival in the field, were mapped in meadow fescue (Festuca pratensis Huds.) and compared with corresponding traits in Triticeae and rice to study co-location with putatively orthologous QTLs and known abiotic stress tolerance genes. The genomes of grass species are highly macrosyntenic; however, the Festuca/Lolium and Triticeae homoeologous chromosomes 4 and 5 show major structural differences that is especially interesting in comparative genomics of frost tolerance. The locations of two frost tolerance/winter survival QTLs on Festuca chromosome 5F correspond most likely to the Fr-A1 and Fr-A2 loci on wheat homoeologous group 5A chromosomes. A QTL for long-term drought tolerance on chromosome 3F (syntenic with rice 1) support evidence from introgression of Festuca genome segments onto homoeologous Lolium chromosomes (3L) that this genome region is an excellent source of tolerance towards drought stress. The coincident location of several stress tolerance QTL in Festuca with QTL and genes in Triticeae species, notably dehydrins, CBF transcription factors and vernalisation response genes indicate the action of structural or regulatory genes conserved across evolutionarily distant species.

Keywords

Drought Tolerance Cold Acclimation Freezing Tolerance Frost Tolerance Winter Survival 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

QTL

Quantitative trait loci

Ft

Frost tolerance

Ws

Winter survival

Dtm

Moderate drought tolerance

Dts

Severe drought tolerance

Gs

Degree of green leaves after severe drought

Ts

Percentage of live tillers after severe drought

IM

Interval mapping

MQM

Multiple QTL mapping

Notes

Acknowledgments

We gratefully acknowledge Hanne Henriksen, Øyvind Jørgensen and Torleiv Veum, The Norwegian University of Life Sciences, and Britta From, Graminor AS, for excellent technical assistance. We would like also to thank Dr. Harry Thomas, IBERS (formerly the Institute of Grassland and Environmental Research), for indispensable help with the drought experiment, and Simen R. Sandve for valuable comments on the manuscript. This investigation was supported by the EU-projects ‘European Gramineae Mapping Project’ (EGRAM—contract no. BI04-CT97-2220) and ‘Sustainable Grasslands Withstanding Environmental Stress’ (SAGES—contract no. QLK5-CT-2000-00764), and Grants no. 110733/112 and 110732/130 from the Research Council of Norway.

Supplementary material

122_2011_1590_MOESM1_ESM.doc (68 kb)
Supplementary material 1 (DOC 68 kb)
122_2011_1590_MOESM2_ESM.doc (37 kb)
Supplementary material 2 (DOC 37 kb)

References

  1. Agromomix Software Inc. (1998) AGROBASE™. User’s Guide and Command Reference. Winnipeg, Manitoba, Canada, pp 378Google Scholar
  2. Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108:25–40PubMedCrossRefGoogle Scholar
  3. Armstead I, Donnison I, Aubry S, Harper J, Hortensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2006) From crop to model to crop: Identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytol 172:592–597PubMedCrossRefGoogle Scholar
  4. Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64–73CrossRefGoogle Scholar
  5. Börner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936PubMedCrossRefGoogle Scholar
  6. Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665CrossRefGoogle Scholar
  7. Choi DW, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247CrossRefGoogle Scholar
  8. Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787Google Scholar
  9. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  10. Crosatti C, Soncini C, Stanca AM, Cattivelli L (1995) The accumulation of a cold-regulated chloroplastic protein is light-dependent. Planta 196:458–463PubMedCrossRefGoogle Scholar
  11. Crosatti C, Nevo E, Stanca AM, Cattivelli L (1996) Genetic analysis of the accumulation of cor14 proteins in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley. Theor Appl Genet 93:975–981CrossRefGoogle Scholar
  12. Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638PubMedCrossRefGoogle Scholar
  13. Davies WJ (2007) Responses of plant growth and functioning to changes in water supply in a changing climate. In: James IL, Morison MDM (ed) Plant growth and climate change, pp 96–117Google Scholar
  14. Dhillon T, Pearce S, Stockinger E, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol. doi: 10.1104/pp.110.159079
  15. Durand JL, Bariac T, Ghesquiere M, Biron P, Richard P, Humphreys M, Zwierzykovski Z (2007) Ranking of the depth of water extraction by individual grass plants, using natural o-18 isotope abundance. Environ Exp Bot 60:137–144CrossRefGoogle Scholar
  16. Ergon A, Fang C, Jørgensen O, Aamlid TS, Rognli OA (2006) Quantitative trait loci controlling vernalisation requirement, heading time and number of panicles in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 112:232–242PubMedCrossRefGoogle Scholar
  17. Fowler DB, Chauvin LP, Limin AE, Sarhan F (1996) The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye. Theor Appl Genet 93:554–559CrossRefGoogle Scholar
  18. Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680PubMedCrossRefGoogle Scholar
  19. Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091PubMedCrossRefGoogle Scholar
  20. Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A, Rossini L, Piffanelli P, Cattivelli L (2009) Genetic variants of Hvcbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet 119:1335–1348PubMedCrossRefGoogle Scholar
  21. Galiba G, Simonsarkadi L, Kocsy G, Salgo A, Sutka J (1992) Possible chromosomal location of genes determining the osmoregulation of wheat. Theor Appl Genet 85:415–418CrossRefGoogle Scholar
  22. Galiba G, Kocsy G, Kaursawhney R, Sutka J, Galston AW (1993) Chromosomal localization of osmotic and salt stress-induced differential alterations in polyamine content in wheat. Plant Sci 92:203–211CrossRefGoogle Scholar
  23. Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost-resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179CrossRefGoogle Scholar
  24. Galiba G, Vágújfalvi A, Li CX, Soltesz A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19CrossRefGoogle Scholar
  25. Ghesquiere M, Humphreys MW, Zwierzykowski Z (2010) Festulolium. In: Boller B, Posselt UK, Vernonesi F (eds) Fodder crops and amenity grasses. Handbook of Plant Breeding vol 5. Springer Science + Business Media, New YorkGoogle Scholar
  26. Giorni E, Crosatti C, Baldi P, Grossi M, Mare C, Stanca AM, Cattivelli L (1999) Cold-regulated gene expression during winter in frost tolerant and frost susceptible barley cultivars grown under field conditions. Euphytica 106:149–157CrossRefGoogle Scholar
  27. Hackett CA (2002) Statistical methods for QTL mapping in cereals. Plant Mol Biol 48:585–599PubMedCrossRefGoogle Scholar
  28. Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B (1993) Quantitative trait loci on barley (Hordeum vulgare L.) chromosome-7 associated with components of winterhardiness. Genome 36:66–71PubMedCrossRefGoogle Scholar
  29. Hemamalini GS, Shashidhar HE, Hittalmani S (2000) Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112:69–78CrossRefGoogle Scholar
  30. Humphreys MW, Pasakinskiene I (1996) Chromosome painting to locate genes for drought resistance transferred from Festuca arundinacea into Lolium multiflorum. Heredity 77:530–534CrossRefGoogle Scholar
  31. Humphreys MW, Thomas H (1993) Improved drought resistance in introgression lines derived from Lolium multiflorum × Festuca arundinacea hybrids. Plant Breed 111:155–161CrossRefGoogle Scholar
  32. Humphreys M, Thomas HM, Harper J, Morgan G, James A, GhamariZare A, Thomas H (1997) Dissecting drought- and cold-tolerance traits in the Lolium-Festuca complex by introgression mapping. New Phytol 137:55–60CrossRefGoogle Scholar
  33. Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–587PubMedCrossRefGoogle Scholar
  34. Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J, Skøt L (2006) A changing climate for grassland research. New Phytol 169:9–26PubMedCrossRefGoogle Scholar
  35. Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lubberstedt TL (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536PubMedCrossRefGoogle Scholar
  36. Kamoshita A, Babu RC, Boopathi NM, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res 109:1–23CrossRefGoogle Scholar
  37. King J, Armstead IP, Donnison SI, Roberts LA, Harper JA, Skot K, Elborough K, King IP (2007) Comparative analyses between Lolium/Festuca introgression lines and rice reveal the major fraction of functionally annotated gene models is located in recombination-poor/very recombination-poor regions of the genome. Genetics 177:597–606PubMedCrossRefGoogle Scholar
  38. Knott SA, Neale DB, Sewell MM, Haley CS (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820CrossRefGoogle Scholar
  39. Knox AK, Dhillon T, Cheng HM, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35PubMedCrossRefGoogle Scholar
  40. Larsen A (1978) Freezing tolerance in grasses—methods for testing in controlled environments. Meld Norg LandbrHogsk 57(23):2–56Google Scholar
  41. Latorre EM (2010) Characterisation of novel Lolium multiflorum germplasm for abiotic stress tolerance. Aberystwyth University, AberystwythGoogle Scholar
  42. Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of 5 major genes and 8 quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585PubMedCrossRefGoogle Scholar
  43. Law CN, Sutka J, Worland AJ (1978) Genetic study of day-length response in wheat. Heredity 41:185–191CrossRefGoogle Scholar
  44. Lilley JM, Ludlow MM, McCouch SR, OToole JC (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427–1436CrossRefGoogle Scholar
  45. Limin AE, Fowler DB (2002) Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell). Ann Bot 89:579–585PubMedCrossRefGoogle Scholar
  46. Limin AE, Danyluk J, Chauvin LP, Fowler DB, Sarhan F (1997) Chromosome mapping of low-temperature induced wcs120 family genes and regulation of cold-tolerance expression in wheat. Mol Gen Genet 253:720–727PubMedCrossRefGoogle Scholar
  47. Malatrasi M, Close TJ, Marmiroli N (2002) Identification and mapping of a putative stress response regulator gene in barley. Plant Mol Biol 50:143–152PubMedCrossRefGoogle Scholar
  48. Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum. Mol Genet Genomics 275:193–203PubMedCrossRefGoogle Scholar
  49. Morgan JM, Tan MK (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806CrossRefGoogle Scholar
  50. Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedo Z (1994) Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89:900–910CrossRefGoogle Scholar
  51. Pulli S, Hjortsholm K, Larsen A, Gudleifsson B, Larsson S, Kristiansson B, Hömmö L, Tronsmo AM, Ruuth P, Kristensson C (1996) Development and evaluation of laboratory testing methods for winterhardiness breeding. Publications vol 32. Nordic Gene Bank, AlnarpGoogle Scholar
  52. Quarrie SA, Laurie DA, Zhu JH, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C (1997) QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol 35:155–165PubMedCrossRefGoogle Scholar
  53. Rognli OA, Saha MC, Bhamidimarri S, van der Hejden S (2010) Fescues. In: Boller B et al. (eds.), Fodder crops and amenity grasses, handbook of plant breeding 5, Springer Science + Business Media, New York, pp 261–292, doi:  10.1007/978-1-4419-0760-8_11
  54. Rudi H, Sandve SR, Opseth LM, Larsen A, Rognli OA (2011) Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling. Plant Sci 180:78–85PubMedCrossRefGoogle Scholar
  55. Sandve SR, Rudi H, Asp T, Rognli OA (2008) Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol Biol 8:245PubMedCrossRefGoogle Scholar
  56. Sarma RN, Fish L, Gill BS, Snape JW (2000) Physical characterization of the homoeologous Group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. Genome 43:191–198Google Scholar
  57. SAS (2002) SAS/SAS user’s guide: statistics. Version 9.1. SAS Institute Inc., Cary, NCGoogle Scholar
  58. Scarth R, Law CN (1983) The location of the photoperiod gene, Ppd2 and an additional genetic-factor for ear-emergence time on chromosome 2B of wheat. Heredity 51:607–619CrossRefGoogle Scholar
  59. Scarth R, Law CN (1984) The control of the day-length response in wheat by the group 2 chromosomes. Plant Breed 92:140–150Google Scholar
  60. Sim S, Chang T, Curley J, Warnke SE, Barker RE, Jung G (2005) Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. Theor Appl Genet 110:1011–1019PubMedCrossRefGoogle Scholar
  61. Skinner J, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842PubMedCrossRefGoogle Scholar
  62. Snape JW, Semikhodskii A, Fish L, Sarma RN, Quarrie SA, Galiba G, Sutka J (1997) Mapping of frost toleranc loci in wheat an comparative mapping with other cereals. Acta Agron Hung 45:265–270Google Scholar
  63. Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494PubMedCrossRefGoogle Scholar
  64. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040PubMedCrossRefGoogle Scholar
  65. Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44CrossRefGoogle Scholar
  66. Sutka J, Galiba G, Vágújfalvi A, Gill BS, Snape JW (1999) Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theor Appl Genet 99:199–202CrossRefGoogle Scholar
  67. Tamura K, Yamada T (2007) A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between poaceae species. Theor Appl Genet 114:273–283PubMedCrossRefGoogle Scholar
  68. Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698CrossRefGoogle Scholar
  69. Thomas H, Evans C (1989) Effects of divergent selection for osmotic adjustment on water relations and growth of plants of Lolium perenne. Ann Bot 64:581–587Google Scholar
  70. Thomas H, Humphreys MO (1991) Progress and potential of interspecific hybrids of Lolium and Festuca. J Agric Sci 117:1–8CrossRefGoogle Scholar
  71. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454PubMedCrossRefGoogle Scholar
  72. Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514PubMedCrossRefGoogle Scholar
  73. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034PubMedCrossRefGoogle Scholar
  74. Turner LB, Cairns AJ, Armstead IP, Thomas H, Humphreys MW, Humphreys MO (2008) Does fructan have a functional role in physiological traits? Investigation by quantitative trait locus mapping. New Phytol 179:765–775PubMedCrossRefGoogle Scholar
  75. Ul Haq T, Gorham J, Akhtar J, Steele KA (2010) Dynamic QTL for stress components on chromosome 1 of rice. Func Plant Biol (in press)Google Scholar
  76. Vágújfalvi A, Crosatti C, Galiba G, Dubcovsky J, Cattivelli L (2000) Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the Cor14b gene in frost-tolerant and frost-sensitive genotypes. Mol General Genet 263:194–200CrossRefGoogle Scholar
  77. Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genom 269:60–67Google Scholar
  78. Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genom 274:506–514CrossRefGoogle Scholar
  79. van Ooijen JW, Maliepaard C (1996) MapQTL version 3.0: Software for the calculation of QTL position on genetic maps. CPRO-DLO, WageningenGoogle Scholar
  80. van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2000) MapQTL™ version 4.0: user friendly power in QTL mapping. Addendum to the manual of version 3.0. Plant Research International, WageningenGoogle Scholar
  81. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211PubMedCrossRefGoogle Scholar
  82. Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity 93:77–78PubMedCrossRefGoogle Scholar
  83. Welsh JR, Keim DL, Pirasteh B, Ricarhds RD (1973) Genetic control of photoperiod response in wheat. In: Sears ER, Sears LMS (eds), Proceeding of the 4th International Wheat Genetics Symposium. University of Missouri, Columbia, USA, pp 879-884Google Scholar
  84. Xiong YW, Fei SZ, Arora R, Brummer EC, Barker RE, Jung GW, Warnke SE (2007) Identification of quantitative trait loci controlling winter hardiness in an annual × perennial ryegrass interspecific hybrid population. Mol Breed 19:125–136CrossRefGoogle Scholar
  85. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268PubMedCrossRefGoogle Scholar
  86. Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT (2001) Locating genomic regions associated with components of drought resistance in rice: Comparative mapping within and across species. Theor Appl Genet 103:19–29CrossRefGoogle Scholar
  87. Zhang C, Fei S-z, Arora R, Hannapel D (2010) Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta 232:155–164PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Vibeke Alm
    • 1
    • 2
  • Carlos S. Busso
    • 1
    • 3
  • Åshild Ergon
    • 1
  • Heidi Rudi
    • 1
  • Arild Larsen
    • 4
  • Michael W. Humphreys
    • 5
  • Odd Arne Rognli
    • 1
    Email author
  1. 1.Department of Plant and Environmental SciencesNorwegian University of Life SciencesÅsNorway
  2. 2.Department of Research AdministrationUniversity of OsloOsloNorway
  3. 3.Department of Otolaryngology, Stanley S Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansUSA
  4. 4.Graminor ASBodøNorway
  5. 5.Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK

Personalised recommendations