Advertisement

Theoretical and Applied Genetics

, Volume 122, Issue 7, pp 1399–1410 | Cite as

Comparative mapping of the Oregon Wolfe Barley using doubled haploid lines derived from female and male gametes

  • L. CistuéEmail author
  • A. Cuesta-Marcos
  • S. Chao
  • B. Echávarri
  • Y. Chutimanitsakun
  • A. Corey
  • T. Filichkina
  • N. Garcia-Mariño
  • I. Romagosa
  • P. M. Hayes
Original Paper

Abstract

The Oregon Wolfe Barley mapping population is a resource for genetics research and instruction. Prior reports are based on a population of doubled haploid (DH) lines developed by the Hordeum bulbosum (H.b.) method, which samples female gametes. We developed new DH lines from the same cross using anther culture (A.C.), which samples male gametes. Linkage maps were generated in each of the two subpopulations using the same 1,328 single nucleotide polymorphism markers. The linkage maps based on DH lines derived from the products of megasporogeneis and microsporogenesis revealed minor differences in terms of estimated recombination rates. There were no differences in locus ordering. There was greater segregation distortion in the A.C.-derived subpopulation than in the H.b.-derived subpopulation, but in the region showing the greatest distortion, the cause was more likely allelic variation at the ZEO1 plant height locus rather than to DH production method. The effects of segregation distortion and pleiotropy had greater impacts on estimates of quantitative trait locus effect than population size for reproductive fitness traits assayed under greenhouse conditions. The Oregon Wolfe Barley (OWB) population and data are community resources. Seed is available from three distribution centers located in North America, Europe, and Asia. Details on ordering seed sets, as well as complete genotype and phenotype data files, are available at http://wheat.pw.usda.gov/ggpages/maps/OWB/.

Keywords

Quantitative Trait Locus Double Haploid Segregation Distortion Double Haploid Line Double Haploid Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

L. Cistué was recipient of a Senior Research Fellowship from the Spanish Ministry of Science and Innovation during his time with the Oregon State University Barley Project and his research was financed by the Spanish Ministry of Science and Innovation thought the National Plan Projects AGL2005-07195-C02-01 and AGL2008-05541-C02-01. Alfonso Cuesta-Marcos was supported by a postdoctoral fellowship from the Spanish Ministerio de Ciencia e Innovación (MICINN). The BOPA SNPs were developed under the auspices of USDA-CSREES-NRI Grant No 2006- 55606-16722 “Barley Coordinated Agricultural Project: Leveraging Genomics, Genetics, and Breeding for Gene Discovery and Barley Improvement”. This paper is dedicated to Dr. Bob Wolfe, whose vision and persistence led to the development of the Wolfe dominant and recessive marker stocks.

Supplementary material

122_2011_1540_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 30 kb)
122_2011_1540_MOESM2_ESM.doc (72 kb)
Supplementary material 2 (DOC 72 kb)
122_2011_1540_MOESM3_ESM.doc (68 kb)
Supplementary material 3 (DOC 67 kb)
122_2011_1540_MOESM4_ESM.doc (67 kb)
Supplementary material 4 (DOC 67 kb)
122_2011_1540_MOESM5_ESM.doc (39 kb)
Supplementary material 5 (DOC 39 kb)
122_2011_1540_MOESM6_ESM.doc (980 kb)
Supplementary material 6 (DOC 979 kb)
122_2011_1540_MOESM7_ESM.doc (730 kb)
Supplementary material 7 (DOC 730 kb)

References

  1. Börner A, Buck-Sorlin GH, Hayes PM, Malyshev S, Korzun V (2002) Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121:129–132CrossRefGoogle Scholar
  2. Chen FQ, Prehn D, Hayes PM, Mulrooney D, Corey A, Vivar H (1994) Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet 88:215–219Google Scholar
  3. Cistué L, Vallés MP, Echávarri B, Sanz JM, Castillo AM (2003) Barley anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 29–35Google Scholar
  4. Cistué L, Echávarri B, Batlle F, Soriano M, Castillo A, Vallés MP, Romagosa I (2005) Segregation distortion for agronomic traits in doubled haploid lines of barley. Plant Breed 124:546–550CrossRefGoogle Scholar
  5. Cistué L, Romagosa I, Batlle F, Echávarri B (2009) Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 28:727–735PubMedCrossRefGoogle Scholar
  6. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou M, Chao S, Varshney RK, Sücs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582PubMedCrossRefGoogle Scholar
  7. Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szücs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424CrossRefGoogle Scholar
  8. Devaux P, Kilian A, Kleinhofs A (1995) Comparative mapping of the barley genome with male and female recombination-derived, doubled haploid populations. Mol Gen Genet 249:600–608PubMedCrossRefGoogle Scholar
  9. Febrer M, Wilhelm E, Al-Kaff N, Wright J, Powell W, Bevan MW, Boulton MI (2009) Rapid identification of the three homoeologues of the wheat dwarfing gene Rht using a novel PCR-based screen of three-dimensional BAC pools. Genome 52:993–1000PubMedCrossRefGoogle Scholar
  10. Foisset N, Delourne R (1996) Segregation distortion in androgenic plants. In: Jain SM, Spory SK, Veilleux RE (eds) In: Vitro haploid production in higher plants, vol 2. Kluwer, Dordrecht, pp 189—201Google Scholar
  11. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends in Plant Sci 12:368–375CrossRefGoogle Scholar
  12. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256CrossRefGoogle Scholar
  13. Guzy-Wrobelska J, Szarejko I (2003) Molecular and agronomic evaluation of wheat doubled haploid lines obtained through maize pollination and anther culture methods. Plant Breed 122:305–313CrossRefGoogle Scholar
  14. Guzy-Wrobelska J, Labocha-Pawlowska A, Kwasniewski M, Szarejko I (2007) Different recombination frequencies in wheat doubled haploid populations obtained through maize pollination and anther culture. Euphytica 156:173–183Google Scholar
  15. Hearden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1, 000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391CrossRefGoogle Scholar
  16. Hunter CP (1988) Plant regeneration from microspores of barley, Hordeum vulgare. PhD Thesis, Wye College, University of London, LondonGoogle Scholar
  17. Jacquard C, Nolin F, Hécart C, Grauda D, Rashal I, Dhondt-Cordelier S, Sangwan RS, Devaux P, Mazeyrat-Gourbeyre F, Clément C (2009) Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep 28:1329–1339PubMedCrossRefGoogle Scholar
  18. Jafary H, Albertazzi G, Marcel TC, Niks R (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327–2339PubMedCrossRefGoogle Scholar
  19. Jia QJ, Zhang JJ, Westcott S, Zhang XQ, Bellgard M, Lance R, Li CD (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262PubMedCrossRefGoogle Scholar
  20. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216PubMedGoogle Scholar
  21. Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003) A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res 54:1173–1185CrossRefGoogle Scholar
  22. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876PubMedCrossRefGoogle Scholar
  23. Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). J Hered 135:145–151Google Scholar
  24. Kuenzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412Google Scholar
  25. Lambrides CJ, Godwin ID, Lawn RJ, Imrie BC (2004) Segregation distortion for seed testa color in mungbean (Vigna radiata L. Wilcek). J Hered 95(6):532–535PubMedCrossRefGoogle Scholar
  26. Lapitan VC, Redoña ED, Abe T, Brar DS (2009) Molecular characterization and agronomic performance of DH lines from the F1 of indica and japonica cultivar of rice (Oryza sativa L.). Field Crops Res 112:222–228CrossRefGoogle Scholar
  27. Lenormand T, Dutheil L (2005) Recombination difference between sexes: a role for haploid selection. PLoS Biol 3:396–403CrossRefGoogle Scholar
  28. Li J, Hsia A, Schnable PS (2007) Recent advances in plant recombination. Curr Opin Plant Biol 10:131–135PubMedCrossRefGoogle Scholar
  29. Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628PubMedCrossRefGoogle Scholar
  30. Lundqvist U, Lundqvist A (1998) Intermedium mutants in barley (Hordeum vulgare L.): diversity, interactions and plant breeding value. J Appl Genet 39:85–96Google Scholar
  31. Ma H, Busch RH, Riera-Lizarazu O, Rines HW, Dill-Macky R (1999) Agronomic performance of lines derived from anther culture, maize pollination and single-seed descent in a spring wheat cross. Theor Appl Genet 99:432–436CrossRefGoogle Scholar
  32. Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 21–52Google Scholar
  33. Manninen OM (2000) Associations between anther-culture response and molecular markers on chromosomes 2H, 3H and 4H of barley (Hordeum vulgare L.). Theor Appl Genet 100:57–62CrossRefGoogle Scholar
  34. Marquez-Cedillo LA, Hayes PM, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM (2001) QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 103:625–637CrossRefGoogle Scholar
  35. Marshall DL, Marieken GM, Shaner MGM, Oliva JP (2007) Effects of pollen load size on seed paternity in wild radish: the roles of pollen competition and mate choice. Evolution 61:1925–1937PubMedCrossRefGoogle Scholar
  36. Melchinger AE, Utz HF, Schön CC (1998) Quantitative Trait Locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403PubMedGoogle Scholar
  37. Mezard C (2006) Meiotic recombination hotspots in plants. Biochem Soc Trans 34:531–534PubMedCrossRefGoogle Scholar
  38. Muñoz-Amatriain M, Castillo AM, Chen XW, Cistué L, Vallés MP (2008) Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Mol Breed 22:119–129CrossRefGoogle Scholar
  39. Payne RW (2006) The Guide to GenStat Release 9. VSN International, HertfordshireGoogle Scholar
  40. Rikiishi K, Saisho D, Takeda K (2008) Uzu, a barley semi-dwarf gene, suppresses plant regeneration in calli derived from immature embryos. Breed Sci 58:149–155CrossRefGoogle Scholar
  41. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527PubMedCrossRefGoogle Scholar
  42. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1, 000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  43. Supena EDJ, Winarto B, Riksen T, Dubas E, van Lammeren A, Offringa R, Boutilier K, Custers J (2008) Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. J Exp Bot 59:803–814PubMedCrossRefGoogle Scholar
  44. Szücs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. The Plant Genome 2:1–7CrossRefGoogle Scholar
  45. Thomas WTB, Forster BP, Gertsson B (2003) Doubled haploids in breeding. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer, Dordrecht, pp 337–350Google Scholar
  46. Törjék O, Witucka-Wall H, Meyer RC, von Korff M, Kusterer B, Rautengarten C, Altmann T (2006) Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor Appl Genet 113:1551–1561PubMedCrossRefGoogle Scholar
  47. Torp AM, Andersen SB (2009) Albinism in microspore culture. Touraev A et al. (eds) Advances in haploid production in higher plants, Chap. 12. Springer Science, New York, pp.155–160Google Scholar
  48. Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richarson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270PubMedCrossRefGoogle Scholar
  49. Van Ooijen JW (2006) JoinMap R 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma V.V., WageningenGoogle Scholar
  50. Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103PubMedCrossRefGoogle Scholar
  51. Wang S, Basten CJ, Zeng Z-B (2001–2003) Windows QTL cartographer 2.5. Department of Statistics, North Carolina.State University, Raleigh, NC, USAGoogle Scholar
  52. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206PubMedCrossRefGoogle Scholar
  53. Wolfe RI (1972) A multiple stock in Brandon, Canada. Barley Genet Newsl 2:170Google Scholar
  54. Wolfe RI, Franckowiak JD (1991) Multiple dominant and recessive genetic marker stocks in spring barley. Barley Genet Newsl 20:117–121Google Scholar
  55. Xian-Liang S, Xue-Zhen S, Tian-Zhen Z (2006) Segregation distortion and its effect on genetic mapping in plants. Chin J Agric Biotech 3:163–169Google Scholar
  56. Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545PubMedCrossRefGoogle Scholar
  57. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar
  58. Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221–1232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • L. Cistué
    • 1
    • 2
    Email author
  • A. Cuesta-Marcos
    • 1
  • S. Chao
    • 3
  • B. Echávarri
    • 2
  • Y. Chutimanitsakun
    • 1
  • A. Corey
    • 1
  • T. Filichkina
    • 1
  • N. Garcia-Mariño
    • 1
    • 2
  • I. Romagosa
    • 4
  • P. M. Hayes
    • 1
  1. 1.Department of Crop and Soil SciencesOregon State UniversityCorvallisUSA
  2. 2.Departamento de Genética y Producción Vegetal, Estación Experimental de Aula DeiConsejo Superior de Investigaciones CientíficasZaragozaSpain
  3. 3.USDA-ARS Biosciences Research LabFargoUSA
  4. 4.Centre UdL-IRTAUniversitat de LleidaLleidaSpain

Personalised recommendations