Theoretical and Applied Genetics

, Volume 122, Issue 6, pp 1189–1198 | Cite as

A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat

Original Paper

Abstract

A Chinese Spring-Sumai 3 chromosome 7A disomic substitution line (CS-Sumai 3-7ADSL) was reported to have a high level of Fusarium head blight (FHB) resistance for symptom spread within a spike (Type II) and low deoxynivalenol accumulation in infected kernels (Type III), but a quantitative trait locus (QTL) on chromosome 7A has never been identified from this source. To characterize QTL on chromosome 7A, we developed 191 7A chromosome recombinant inbred lines (7ACRIL) from a cross between Chinese Spring and CS-Sumai 3-7ADSL and evaluated both types of resistance in three greenhouse experiments. Two major QTL with Sumai 3 origin, conditioning both Type II and III resistance, were mapped in the short arm of chromosomes 3B (3BS) and near the centromere of chromosome 7A (7AC). The 3BS QTL corresponds to previously reported Fhb1 from Sumai 3, whereas 7AC QTL, designated as Fhb7AC, is a novel QTL identified from CS-Sumai 3-7ADSL in this study. Fhb7AC explains 22% phenotypic variation for Type II and 24% for Type III resistance. Marker Xwmc17 is the closest marker to Fhb7AC for both types of resistance. Fhb1 and Fhb7AC were additive, and together explained 56% variation for Type II and 41% for Type III resistance and resulted in 66% reduction in FHB severity and 84% reduction in deoxynivalenol (DON) content. Haplotype analysis of Sumai 3 parents revealed that Fhb7AC originated from Funo, an Italian cultivar. Fhb7AC has the potential to be used in improving wheat cultivars for both types of resistance.

Supplementary material

122_2010_1523_MOESM1_ESM.doc (264 kb)
Supplementary material 1 (DOC 264 kb)

References

  1. Anderson JA, Chao S, Liu S (2007) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci 47(S3):S112–S119Google Scholar
  2. Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Fetch JM, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168CrossRefGoogle Scholar
  3. Bai GH, Plattner R, Desjardins A, Kolb F (2001) Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breed 120:1–6CrossRefGoogle Scholar
  4. Bai GH, Shaner G (1996) Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis 80:975–979CrossRefGoogle Scholar
  5. Bai GH, Shaner G, Ohm H (2000) Inheritance of resistance to Fusarium graminearum in wheat. Theor Appl Genet 100:1–8CrossRefGoogle Scholar
  6. Bai GH, Shaner GE (1994) Scab of wheat: perspective and control. Plant Dis 78:760–766CrossRefGoogle Scholar
  7. Bai GH, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89:343–348PubMedCrossRefGoogle Scholar
  8. Bai GH, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161PubMedCrossRefGoogle Scholar
  9. Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor Appl Genet 104:84–91PubMedCrossRefGoogle Scholar
  10. Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508PubMedCrossRefGoogle Scholar
  11. Chen J, Griffey CA, Saghai-Maroof MA, Stromberg EL, Biyashev RM, Zhao W, Chappell MR, Pridgen TH, Dong Y, Zeng Z (2006) Validation of two major quantitative trait loci for Fusarium head blight resistance in chinese wheat line W14. Plant Breed 125:99–101CrossRefGoogle Scholar
  12. Cuthbert PA, Somers DJ, Thomas J, Brulé-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437PubMedCrossRefGoogle Scholar
  13. Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brulé-Babel A (2006) Fine mapping Fhb1. a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472PubMedCrossRefGoogle Scholar
  14. Haldane JBS (1919) The combination of linkage values, and the calculation of distance between the loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  15. Jia G, Chen P, Qin G, Bai G, Wang X, Wang S, Zhou B, Zhang S, Liu D (2005) QTLs for Fusarium head blight response in a wheat DH population of Wangshuibai/Alondra’s. Euphytica 146:183–191CrossRefGoogle Scholar
  16. Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789PubMedCrossRefGoogle Scholar
  17. Kolb FL, Bai GH, Muehlbauer GJ, Anderson JA, Smith KP, Fedak G (2001) Host plant resistance genes for Fusarium head blight: mapping and manipulation with molecular markers. Crop Sci 41:611–619CrossRefGoogle Scholar
  18. Korosteleva SN, Smith TK, Boermans HJ (2007) Effects of feed borne Fusarium mycotoxins on the performance, metabolism, and immunity of dairy cows. J Dairy Sci 90:3867–3873PubMedCrossRefGoogle Scholar
  19. Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhāzy Ã, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324PubMedCrossRefGoogle Scholar
  20. Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. II: type I resistance. Theor Appl Genet 112:528–535PubMedCrossRefGoogle Scholar
  21. Liu S, Anderson JA (2003) Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome 46:817–823PubMedCrossRefGoogle Scholar
  22. Liu S, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, Chalhoub B, Anderson JA (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun 36:195–201CrossRefGoogle Scholar
  23. Ma H-X, Bai G-H, Gill BS, Hart LP (2006a) Deletion of a chromosome arm altered wheat resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese Spring. Plant Dis 90:1545–1549CrossRefGoogle Scholar
  24. Ma HX, Bai GH, Zhang X, Lu WZ (2006b) Main effects, epistasis, and environmental interactions of quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population. Phytopathology 96:534–541PubMedCrossRefGoogle Scholar
  25. Ma HX, Zhang KM, Gao L, Bai GH, Chen HG, Cai ZX, Lu WZ (2006c) Quantitative trait loci for resistance to Fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Plant Pathol 55:739–745CrossRefGoogle Scholar
  26. Mardi M, Buerstmayr H, Ghareyazie B, Lemmens M, Mohammadi SA, Nolz R, Ruckenbauer P (2005) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Wangshuibai’-derived population. Plant Breed 124:329–333CrossRefGoogle Scholar
  27. Mardi M, Pazouki L, Delavar H, Kazemi MB, Ghareyazie B, Steiner B, Nolz R, Lemmens M, Buerstmayr H (2006) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Frontana’-derived population. Plant Breed 125:313–317CrossRefGoogle Scholar
  28. Mesterházy Á, Bartók T, Mirocha CG, Komoróczy R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118:97–110CrossRefGoogle Scholar
  29. Miller JD, Young JC, Sampson DR (1985) Deoxynivalenol and Fusarium head blight resistance in spring cereals. Phytopathol Z 113:359–367CrossRefGoogle Scholar
  30. Mirocha CJ, Kolaczkowski E, Xie W, Yu H, Jelen H (1998) Analysis of deoxynivalenol and its derivatives (batch and single kernel) using gas chromatography/mass spectrometry. J Agric Food Chem 46:1414–1418CrossRefGoogle Scholar
  31. Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238CrossRefGoogle Scholar
  32. Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166PubMedCrossRefGoogle Scholar
  33. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedCrossRefGoogle Scholar
  34. Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838Google Scholar
  35. Semagn K, Skinnes H, Bjornstad A, Maroy AG, Tarkegne Y (2007) Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from ‘Arina’ and NK93604. Crop Sci 47:294–303CrossRefGoogle Scholar
  36. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  37. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560PubMedCrossRefGoogle Scholar
  38. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0: Software for the calculation of genetic linkage maps. 3.0 edn. Plant Res Int, WageningenGoogle Scholar
  39. Verges VL, Sanford DV, Brown-Guedira G (2006) Heritability estimates and response to Selection for Fusarium head blight resistance in soft red winter wheat. Crop Sci 46:1587–1594CrossRefGoogle Scholar
  40. Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z (2010) Fine mapping Fhb4. a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:147–156PubMedCrossRefGoogle Scholar
  41. Yang ZP, Gilbert J, Somers DJ, Fedak G, Procunier JD, McKenzie IH (2003) Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Mol Breed 12:309–317CrossRefGoogle Scholar
  42. Yu JB, Bai GH, Cai SB, Ban T (2006) Marker-assisted characterization of Asian wheat lines for resistance to Fusarium head blight. Theor Appl Genet 113:308–320PubMedCrossRefGoogle Scholar
  43. Yu JB, Bai GH, Cai SB, Dong YH, Ban T (2008a) New Fusarium head blight-resistant sources from Asian wheat germplasm. Crop Sci 48:1090–1097CrossRefGoogle Scholar
  44. Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL (2008b) Quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population of Wangshuibai/Wheaton. Phytopathology 98:87–94PubMedCrossRefGoogle Scholar
  45. Zhou WC, Kolb FL, Bai GH, Domier LL, Yao JB (2002) Effect of individual Sumai 3 chromosomes on resistance to scab spread within spikes and deoxynivalenol accumulation within kernels in wheat. Hereditas 137:81–89PubMedCrossRefGoogle Scholar
  46. Zhou W, Kolb FL, Yu J, Bai G, Boze LK, Domier LL (2004) Molecular characterization of Fusarium head blight resistance in Wangshuibai with simple sequence repeat and amplified fragment length polymorphism markers. Genome 47:1137–1143PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  1. 1.Department of AgronomyKansas State UniversityManhattanUSA
  2. 2.USDA-ARS Hard Winter Wheat Genetic Research UnitManhattanUSA
  3. 3.Department of Plant PathologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations