Advertisement

Theoretical and Applied Genetics

, Volume 122, Issue 6, pp 1133–1147 | Cite as

Genetic mapping of DArT markers in the FestucaLolium complex and their use in freezing tolerance association analysis

  • Jan Bartoš
  • Simen Rød Sandve
  • Roland Kölliker
  • David Kopecký
  • Pavla Christelová
  • Štěpán Stočes
  • Liv Østrem
  • Arild Larsen
  • Andrzej Kilian
  • Odd-Arne Rognli
  • Jaroslav Doležel
Original Paper

Abstract

Species belonging to the FestucaLolium complex are important forage and turf species and as such, have been studied intensively. However, their out-crossing nature and limited availability of molecular markers make genetic studies difficult. Here, we report on saturation of F. pratensis and L. multiflorum genetic maps using Diversity Array Technology (DArT) markers and the DArTFest array.The 530 and 149 DArT markers were placed on genetic maps of L. multiflorum and F. pratensis, respectively, with overlap of 20 markers, which mapped in both species. The markers were sequenced and comparative sequence analysis was performed between L. multiflorum, rice and Brachypodium. The utility of the DArTFest array was then tested on a Festulolium population FuRs0357 in an integrated analysis using the DArT marker map positions to study associations between markers and freezing tolerance. Ninety six markers were significantly associated with freezing tolerance and five of these markers were genetically mapped to chromosomes 2, 4 and 7. Three genomic loci associated with freezing tolerance in the FuRs0357 population co-localized with chromosome segments and QTLs previously indentified to be associated with freezing tolerance. The present work clearly confirms the potential of the DArTFest array in genetic studies of the Festuca–Lolium complex. The annotated DArTFest array resources could accelerate further studies and improvement of desired traits in Festuca–Lolium species.

Keywords

Freezing Tolerance DArT Marker Forage Grass Brachypodium Syntenic Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Marie Seifertová, MSc. for excellent technical assistance, and to the team at Diversity Arrays Technology Pty for DArT genotyping. This work has been supported by the Ministry of Agriculture of the Czech Republic (grant award NAZV QH71267) and by European Union (grant No. ED0007/01/01 Centre of the Region Haná for Biotechnological and Agricultural Research).

Supplementary material

122_2010_1518_MOESM1_ESM.xls (118 kb)
Supplementary material 1 (XLS 118 kb)

References

  1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420PubMedCrossRefGoogle Scholar
  2. Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003) A linkage map of meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 108:25–40PubMedCrossRefGoogle Scholar
  3. Bennett MD, Leitch IJ (2005) Plant DNA C-values database (release 4.0, Oct. 2005). http://www.kew.org/cvalues/
  4. Bolibok-Bragoszewska H, Heller-Uszyńska K, Wenzl P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2009) DArT markers for the rye genome—genetic diversity and mapping. BMC Genomics 10:578PubMedCrossRefGoogle Scholar
  5. Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:119–125PubMedCrossRefGoogle Scholar
  6. Catalán P, Torrecilla P, Rodriguez JÁL, Olmstead RG (2004) Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol Phylogenet Evol 31:517–541PubMedCrossRefGoogle Scholar
  7. Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665CrossRefGoogle Scholar
  8. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedCrossRefGoogle Scholar
  9. Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153:1846–1858PubMedCrossRefGoogle Scholar
  10. Ergon Å, Fang C, Jørgensen Ø, Aamlid TS, Rognli OA (2006) Quantitative trait loci controlling vernalisation requirement heading time and number of panicles in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 112:232–242PubMedCrossRefGoogle Scholar
  11. Fjellheim S, Rognli OA, Fosnes K, Brochmann C (2006) Recent bottlenecking in the widespread meadow fescue (Festuca pratensis Huds.) inferred from chloroplast DNA sequences. J Biogeogr 33:1470–1478CrossRefGoogle Scholar
  12. Galiba G, Vágújfalvi A, Li C, Soltész A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19CrossRefGoogle Scholar
  13. Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003PubMedCrossRefGoogle Scholar
  14. Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 5:e10065PubMedCrossRefGoogle Scholar
  15. Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–587PubMedCrossRefGoogle Scholar
  16. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25PubMedCrossRefGoogle Scholar
  17. Jackson S, Chen J (2010) Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol 13:153–159PubMedCrossRefGoogle Scholar
  18. Kopecký D, Lukaszewski AJ, Doležel J (2005) Genomic constitution of Festulolium cultivars released in the Czech Republic. Plant Breeding 124:454–458CrossRefGoogle Scholar
  19. Kopecký D, Bartoš J, Lukaszewski AJ, Baird JH, Černoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Doležel J, Andrzej Kilian A (2009) Development and mapping of DArT markers within the Festuca–Lolium complex. BMC Genomics 10:473PubMedCrossRefGoogle Scholar
  20. Kopecký D, Bartoš J, Christelová P, Černoch V, Kilian A, Doležel J (2011) Genomic constitution of Festuca × Lolium hybrids revealed by the DArTFest array. Theor Appl Genet. doi: 10.1007/s00122-010-1451-1
  21. Kosmala A, Zwierzykowski Z, Gasior D, Rapacz M, Zwierzykowska E, Humphreys MW (2006) GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96:243–251PubMedCrossRefGoogle Scholar
  22. Larsen A (1978) Freezing tolerance in grasses. Methods for testing in controlled environments. Meld Norg Landbr Høgsk 57:1–56Google Scholar
  23. Larsen A (1979) Freezing tolerance in grasses. Variation within populations and responce to selection. Meld Norg Landbr Høgsk 58:1–28Google Scholar
  24. Larsen A (1994) Breeding winter hardy grasses. Euphytica 77:231–237CrossRefGoogle Scholar
  25. Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32(Database issue):D360–D363Google Scholar
  26. Peter-Schmid M, Boller B, Kölliker R (2008) Habitat and management affect genetic structure of Festuca pratensis but not Lolium multiflorum ecotype populations. Plant Breed 127:510–517CrossRefGoogle Scholar
  27. Preston JC, Kellogg EA (2007) Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses. Plant J 52:69–81PubMedCrossRefGoogle Scholar
  28. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  29. Rizzon C, Ponger L, Gaut BS (2006) Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2:e115PubMedCrossRefGoogle Scholar
  30. Rognli OA, Saha MC, Bhamidimarri S, van der Hejden S (2010) Fescues. In ‘B. Boller et al. (eds) Fodder cops and Amenity grasses, handbook of plant breeding, vol 5. doi: 10.1007/978-1-4419-0760-8_11, Springer Science + Business Media, pp 261–292
  31. Shinozuka H, Hisano H, Yoneyama S, Shimamoto Y, Jones ES, Forster JW, Yamada T, Kanazawa A (2006) Gene expression and genetic mapping analyses of a perennial ryegrass glycine-rich RNA-binding protein gene suggest a role in cold adaptation. Mol Genet Genomics 275:399–408PubMedCrossRefGoogle Scholar
  32. Singh PK, Mergoum M, Adhikari TB, Shah T, Ghavami F, Kianian SF (2010) Genetic and molecular analysis of wheat tan spot resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol Breed 25:369–379CrossRefGoogle Scholar
  33. Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Ser B 64:479–498CrossRefGoogle Scholar
  34. Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Kölliker R (2006) Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:661–671PubMedCrossRefGoogle Scholar
  35. Studer B, Boller B, Bauer E, Posselt UK, Widmer F, Kölliker R (2007) Consistent detection of QTLs for crown rust resistance in Italian ryegrass (Lolium multiflorum Lam.) across environments and phenotyping methods. Theor Appl Genet 115:9–17PubMedCrossRefGoogle Scholar
  36. Studer B, Kölliker R, Muylle H, Asp T, Frei U, Roldán-Ruiz I, Barre P, Barth S, Skøt L, Armstead IP, Dolstra O, Roulund N, Nielsen KK, Lübberstedt T (2010) EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plant Biol 10:177PubMedCrossRefGoogle Scholar
  37. Sugiyama S (1998) Differentiation in competitive ability and cold tolerance between diploid and tetraploid cultivars in Lolium perenne. Euphytica 103:55–59CrossRefGoogle Scholar
  38. The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  39. Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjørnstad A, Howarth CJ, Jannink JL, Anderson JM, Rossnagel BG, Stuthman DD, Sorrells ME, Jackson EW, Tuvesson S, Kolb FL, Olsson O, Federizzi LC, Carson ML, Ohm HW, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceplitis A, Langdon T (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39PubMedCrossRefGoogle Scholar
  40. Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357PubMedCrossRefGoogle Scholar
  41. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  42. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206PubMedCrossRefGoogle Scholar
  43. Wittenberg AH, van der Lee T, Cayla C, Kilian A, Visser RG, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30–39PubMedCrossRefGoogle Scholar
  44. Zhang X-Y, Hu C-G, Yao J-L (2010) Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J Plant Physiol 167:88–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jan Bartoš
    • 1
  • Simen Rød Sandve
    • 2
  • Roland Kölliker
    • 3
  • David Kopecký
    • 1
  • Pavla Christelová
    • 1
  • Štěpán Stočes
    • 1
  • Liv Østrem
    • 4
  • Arild Larsen
    • 5
  • Andrzej Kilian
    • 6
  • Odd-Arne Rognli
    • 2
  • Jaroslav Doležel
    • 1
  1. 1.Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental BotanyOlomoucCzech Republic
  2. 2.Department of Plant and Environmental SciencesNorwegian University of Life SciencesÅsNorway
  3. 3.Agroscope Reckenholz-Tänikon Research Station ARTZurichSwitzerland
  4. 4.Norwegian Institute for Agricultural and Environmental ResearchHellevik i FjalerNorway
  5. 5.Graminor AS, c/o Bioforsk Nord BodøBodøNorway
  6. 6.Diversity Arrays TechnologyYarralumlaAustralia

Personalised recommendations