Advertisement

Theoretical and Applied Genetics

, Volume 122, Issue 4, pp 747–758 | Cite as

Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.)

  • Fernando J. Yuste-Lisbona
  • Carmen Capel
  • María L. Gómez-Guillamón
  • Juan Capel
  • Ana I. López-Sesé
  • Rafael Lozano
Original Paper

Abstract

Powdery mildew caused by Podosphaera xanthii is a major disease in melon crops, and races 1, 2, and 5 of this fungus are those that occur most frequently in southern Europe. The genotype TGR-1551 bears a dominant gene that provides resistance to these three races of P. xanthii. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), we identified eight markers linked to this dominant gene. Cloning and sequencing of the selected AFLP fragments allowed the development of six codominant PCR-based markers which mapped on the linkage group (LG) V. Sequence analysis of these markers led to the identification of two resistance-like genes, MRGH5 and MRGH63, belonging to the nucleotide binding site (NBS)-leucine-rich repeat (LRR) gene family. Quantitative trait loci (QTL) analysis detected two QTLs, Pm-R1-2 and Pm-R5, the former significantly associated with the resistance to races 1 and 2 (LOD score of 26.5 and 33.3; 53.6 and 61.9% of phenotypic variation, respectively), and the latter with resistance to race 5 (LOD score of 36.8; 65.5% of phenotypic variation), which have been found to be colocalized with the MRGH5 and MRGH63 genes, respectively. The results suggest that the cluster of NBS-LRR genes identified in LG V harbours candidate genes for resistance to races 1, 2, and 5 of P. xanthii. The evaluation of other resistant germplasm showed that the codominant markers here reported are also linked to the Pm-w resistance gene carried by the accession ‘WMR-29’ proving their usefulness as genotyping tools in melon breeding programmes.

Keywords

Quantitative Trait Locus Amplify Fragment Length Polymorphism Powdery Mildew Melon Single Nucleotide Polymorphism Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank R. Tovar and R. Camero for their valuable collaboration in evaluation of the phenotypic traits. The authors also thank L. Rodríguez and G. Ruiz for their help with the laboratory work. This research was supported by the research projects AGL2008-05687-C02-01 and PO6-AGR-02309 funded by the Ministerio de Ciencia e Innovación and Junta de Andalucía, respectively.

References

  1. Allard W (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278Google Scholar
  2. Bardin M, Nicot P, Normand P, Lemaire JM (1997) Virulence variation and DNA polymorphism in Sphaerotheca fuliginea, causal agent of powdery mildew of cucurbits. Eur J Plant Pathol 103:545–554CrossRefGoogle Scholar
  3. Bardin M, Dogimont C, Nicot P, Pitrat M (1999) Genetic analysis of resistance of melon line PI 124112 to Sphaerotheca fuliginea and Erysiphe cichoracearum studied in recombinant inbred lines. Acta Hortic 492:163–168Google Scholar
  4. Bertrand F (1991) Les oïdiums des Cucurbitacées: maintein en culture pure, étude de leur variabilité et de la sensibilité chez le melon PhD Diss. University of Paris XI, OrsayGoogle Scholar
  5. Cohen R, Burger Y, Shraiber S (2002) Physiological races of Sphaerotheca fuliginea: factors affecting their identification and the significance of this knowledge. In: Maynard DN (ed) Proceedings of Cucurbitaceae 2002. ASHS Press, Alexandria, VA, pp 181–187Google Scholar
  6. Cohen R, Burger Y, Katzir N (2004) Monitoring physiological races of Podosphaera xanthii (syn. Sphaerotheca fuliginea), the causal agent of powdery mildew in cucurbits: factors affecting race identification and the importance for research and commerce. Phytoparasitica 32:174–183CrossRefGoogle Scholar
  7. Danin-Poleg Y, Reis N, Tzuri G, Katzir N (2001) Development and characterisation of microsatellite markers in Cucumis. Theor Appl Genet 102:61–72CrossRefGoogle Scholar
  8. De Giovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48CrossRefGoogle Scholar
  9. Del Pino D, Olalla L, Pérez-García A, Rivera ME, García S, Moreno R, de Vicente A, Torés JA (2002) Occurrence of races and pathotypes of cucurbit powdery mildew in south-eastern Spain. Phytoparasitica 30:459–466CrossRefGoogle Scholar
  10. Deleu W, González V, Monfort A, Bendahmane A, Puigdomènech P, Arús P, Garcia-Mas J (2007) Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genomics 278:611–622CrossRefPubMedGoogle Scholar
  11. Deleu W, Esteras C, Roig C, Fernández-Silva M, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arús P, Nuez F, Monforte AJ, Pico MB, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90CrossRefPubMedGoogle Scholar
  12. Dogimont C, Bendahmane A, Pitrat M, Burget-Bigeard E, Hagen L, Le Menn A, Pauquet J, Rousselle P, Caboche M, Chovelon V (2004) New polynucleotide implicated in plant resistance, useful for producing transgenic plants resistant to Aphis gossypii and associated viral transmission, also encoded protein. World patent WO2004072109-A1Google Scholar
  13. Dogimont C, Chovelon V, Tual S, Boissot N, Rittener V, Giovinazzo N, Bendahmane A (2008) Molecular diversity at the Vat/Pm-W resistance locus in melon. In: Pitrat M (ed) Cucurbitaceae 2008. IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. INRA, Avignon, pp 219–227Google Scholar
  14. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  15. Fazio G, Staub JE, Chung SM (2002) Development and characterization of PCR markers in cucumber (Cucumis sativus L.). J Am Soc Hortic Sci 127:545–557Google Scholar
  16. Fernández-Silva I, Eduardo I, Blanca J, Esteras C, Picó B, Nuez F, Arús P, García-Mas J, Monforte A (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150CrossRefPubMedGoogle Scholar
  17. Fukino N, Sakata Y, Kunihisa M, Matsumoto S (2007) Characterisation of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. J Hortic Sci Biotechnol 82:330–334Google Scholar
  18. Fukino N, Ohara T, Monforte A, Sugiyama M, Sakata Y, Kunihisa M, Matsumoto S (2008) Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor Appl Genet 118:165–175CrossRefPubMedGoogle Scholar
  19. Gómez-Guillamón ML, Torés JA, Soria C, Sesé AIL (1995) Screening for resistances to Sphaerotheca fuliginea and two yellowing diseases in Cucumis melo and related Cucumis species. In: Lester GE, Dunlap JR (eds) Cucurbitaceae 1994: evaluation and enhancement of cucurbit germplasm. ASHS Press, Alexandria, VA, pp 205–208Google Scholar
  20. Gómez-Guillamón ML, Moriones E, Luis-Arteaga ML, Alvarez JM, Torés JA, López-Sesé AI, Cánovas I, Sánchez F, Camero R (1998) Morphological and disease resistance evaluation in Cucumis melo and its wild relatives. In: McCreight JD (ed) Cucurbitaceae 1998: evaluation and enhancement of cucurbit germplasm. ASHS Press, Alexandria, VA, pp 53–61Google Scholar
  21. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811CrossRefPubMedGoogle Scholar
  22. Hollomon D, Wheeler IE (2002) Controlling powdery mildews with chemistry. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. The American Phytopathological Society, St. Paul, MN, pp 249–255Google Scholar
  23. Konieczny A, Ausubel FM (1993) A produce for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410CrossRefPubMedGoogle Scholar
  24. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  25. Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24CrossRefGoogle Scholar
  26. McDonald BA, Linde C (2002) Pathogen population genetics, evolution potential and durable resistance. Annu Rev Phytopathol 40:349–379CrossRefPubMedGoogle Scholar
  27. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834CrossRefPubMedGoogle Scholar
  28. Michaels SD, Amasino RM (1998) A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14:381–385CrossRefPubMedGoogle Scholar
  29. Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130PubMedGoogle Scholar
  30. Michelmore RW, Paran I, Kesseli V (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832CrossRefPubMedGoogle Scholar
  31. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392CrossRefPubMedGoogle Scholar
  32. Noguera FJ, Capel J, Alvarez JI, Lozano R (2005) Development and mapping of a codominant SCAR marker linked to the andromonoecious gene of melon. Theor Appl Genet 110:714–720CrossRefPubMedGoogle Scholar
  33. Perchepied L, Bardin M, Dogimont C, Pitrat M (2005) Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95:556–565CrossRefPubMedGoogle Scholar
  34. Périn C, Hagen LS, de Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034CrossRefPubMedGoogle Scholar
  35. Pitrat M (1991) Linkage groups in Cucumis melo L. J Hered 82:406–411Google Scholar
  36. Qu LJ, Foote TN, Roberts MA, Money MA, Aragón-Alcaide L, Snape JW, Moore G (1998) A simple PCR-bases method for scoring the ph1b deletion in wheat. Theor Appl Genet 96:371–375CrossRefGoogle Scholar
  37. Ritschel PS, Lins TCL, Tristan RL, Buso GSC, Buso JA, Ferreira ME (2004) Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4:9Google Scholar
  38. Schupp JM, Prince LB, Klevytska A, Keim P (1999) Internal and flanking sequence from AFLP fragments using ligation-mediated suppression PCR. Biotechniques 26:905–912PubMedGoogle Scholar
  39. Shishkoff N (2000) The name of the cucurbit powdery mildew: Podosphaera (sect. Sphaerotheca) xanthii (Castag.) U. Braun & N. Shish. comb. nov. Phytopathology 90:S133Google Scholar
  40. Sitterly WR (1978) The powdery mildews of cucurbits. In: Spencer DM (ed) The powdery mildews. Academic Press, New York, pp 359–379Google Scholar
  41. Teixeira APM, Barreto FADS, Camargo LEA (2008) An AFLP marker linked to the Pm-1 gene that confers resistance to Podosphaera xanthii race 1 in Cucumis melo. Genet Mol Biol 31:547–550CrossRefGoogle Scholar
  42. van Leeuwen H, Monfort A, Zhang HB, Puigdomènech P (2003) Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51:703–718CrossRefPubMedGoogle Scholar
  43. van Ooijen JH (2004) MapQTL®5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, WageningenGoogle Scholar
  44. van Ooijen JH (2006) JoinMap®4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  45. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefGoogle Scholar
  46. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hormes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  47. Wang YH, Thomas CE, Dean RA (2000) Genetic mapping of a Fusarium wilt resistance gene Fom-2 in melon (Cucumis melo L.). Mol Breed 6:379–389CrossRefGoogle Scholar
  48. Xu H, Yao G, Xiong L, Yang L, Jiang Y, Fu B, Zhao W, Zhang Z, Zhang C, Ma Z (2008) Identification and mapping of pm2026: a recessive powdery mildew resistance gene in an einkorn (Triticum monococcum L.) accession. Theor Appl Genet 117:471–477CrossRefPubMedGoogle Scholar
  49. Yuste-Lisbona FJ, Capel C, Sarria E, Torreblanca R, Gómez-Guillamón ML, Capel J, Lozano R, López-Sesé AI (2010a) Genetic linkage map of melon (Cucumis melo L.) and localization of a major QTL for powdery mildew resistance. Mol Breed. doi: 10.1007/s11032-010-9421-5
  50. Yuste-Lisbona FJ, López-Sesé AI, Gómez-Guillamón ML (2010b) Inheritance of resistance to races 1, 2 and 5 of powdery mildew in the melon TGR-1551. Plant Breed 129:72–75CrossRefGoogle Scholar
  51. Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fernando J. Yuste-Lisbona
    • 1
    • 2
  • Carmen Capel
    • 2
  • María L. Gómez-Guillamón
    • 1
  • Juan Capel
    • 2
  • Ana I. López-Sesé
    • 1
  • Rafael Lozano
    • 2
  1. 1.Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM, UMA-CSIC)MálagaSpain
  2. 2.Departamento de Biología Aplicada (Genética), Edificio CITE II-BUniversidad de AlmeríaAlmeríaSpain

Personalised recommendations