Theoretical and Applied Genetics

, Volume 122, Issue 4, pp 705–722 | Cite as

Contrasted patterns of selection since maize domestication on duplicated genes encoding a starch pathway enzyme

  • J. Corbi
  • M. Debieu
  • A. Rousselet
  • P. Montalent
  • M. Le Guilloux
  • D. Manicacci
  • M. I. Tenaillon
Original Paper

Abstract

Maize domestication from teosinte (Zeamays ssp. parviglumis) was accompanied by an increase of kernel size in landraces. Subsequent breeding has led to a diversification of kernel size and starch content among major groups of inbred lines. We aim at investigating the effect of domestication on duplicated genes encoding a key enzyme of the starch pathway, the ADP-glucose pyrophosphorylase (AGPase). Three pairs of paralogs encode the AGPase small (SSU) and large (LSU) subunits mainly expressed in the endosperm, the embryo and the leaf. We first validated the putative sequence of LSUleaf through a comparative expression assay of the six genes. Second, we investigated the patterns of molecular evolution on a 2 kb coding region homologous among the six genes in three panels: teosintes, landraces, and inbred lines. We corrected for demographic effects by relying on empirical distributions built from 580 previously sequenced ESTs. We found contrasted patterns of selection among duplicates: three genes exhibit patterns of directional selection during domestication (SSUend, LSUemb) or breeding (LSUleaf), two exhibit patterns consistent with diversifying (SSUleaf) and balancing selection (SSUemb) accompanying maize breeding. While patterns of linkage disequilibrium did not reveal sign of coevolution between genes expressed in the same organ, we detected an excess of non-synonymous substitutions in the small subunit functional domains highlighting their role in AGPase evolution. Our results offer a different picture on AGPase evolution than the one depicted at the Angiosperm level and reveal how genetic redundancy can provide flexibility in the response to selection.

Abbreviations

SSU

Small subunit

LSU

Large subunit

Supplementary material

122_2010_1480_MOESM1_ESM.pdf (24 kb)
Semi-quantitative RT-PCR conditions (PDF 23 kb)
122_2010_1480_MOESM2_ESM.pdf (106 kb)
Material description (PDF 105 kb)
122_2010_1480_MOESM3_ESM.pdf (52 kb)
Protocols used for PCR amplification (PDF 52 kb)
122_2010_1480_MOESM4_ESM.pdf (34 kb)
Semi-quantitative RT-PCR profiles of SSUend (a) and SSUemb (b) paralogous genes in 11 organs (PDF 34 kb)

References

  1. Achaz G, Palmer S, Kearney M, Maldarelli F, Mellors JW, Coffin JM, Wakeley J (2004) A robust measure of HIV-1 population turnover within chronically infected individuals. Mol Biol Evol 21:1902–1912PubMedGoogle Scholar
  2. Akihiro T, Mizuno K, Fujimura T (2005) Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 46:937–946PubMedGoogle Scholar
  3. Bae JM, Giroux M, Hannah LC (1990) Cloning and characterization of the brittle-2 gene of maize. Maydica 35:312–322Google Scholar
  4. Ballicora MA, Fu Y, Nesbitt NM, Preiss J (1998) ADP-Glucose pyrophosphorylase from potato tubers. Site-directed mutagenesis studies of the regulatory sites. Plant Physiol 118:265–274PubMedGoogle Scholar
  5. Ballicora MA, Erben ED, Yazaki T, Bertolo AL, Demonte AM, Schmidt JR, Aleanzi M, Bejar CM, Figueroa CM, Fusari CM, Iglesias AA, Preiss J (2007) Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis. J Bacteriol 189:5325–5333PubMedGoogle Scholar
  6. Baye T, Pearson T, Settles A (2006) Development of a calibration to predict maize seed composition using single kernel near infrared spectroscopy. J Cereal Sci 43:236–243Google Scholar
  7. Bejar CM, Jin X, Ballicora MA, Preiss J (2006) Molecular architecture of the glucose 1-phosphate site in ADP-glucose pyrophosphorylases. J Biol Chem 281:40473–40484PubMedGoogle Scholar
  8. Bhave MR, Lawrence S, Barton C, Hannah LC (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2:581–588PubMedGoogle Scholar
  9. Boehlein SK, Shaw JR, Hannah LC, Stewart JD (2010) Probing allosteric binding sites of the maize endosperm ADP-glucose pyrophosphorylase. Plant Physiol 152:85–95PubMedGoogle Scholar
  10. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedGoogle Scholar
  11. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedGoogle Scholar
  12. Burke JM, Tang S, Knapp SJ, Rieseberg LH (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267PubMedGoogle Scholar
  13. Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463PubMedGoogle Scholar
  14. Camus-Kulandaivelu L, Chevin L-M, Tollon C, Charcosset A, Manicacci D, Tenaillon MI (2008) Patterns of variation of the Tb1–D8 region shed light into early maize evolutionary history. Genetics 180:1107–1121PubMedGoogle Scholar
  15. Causse M, Santoni S, Damerval C, Maurice A, Charcosset A, Deatrick J, Vienne D (1996) A composite map of expressed sequences in maize. Genome 39:418–432PubMedGoogle Scholar
  16. Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA 101:700–707PubMedGoogle Scholar
  17. Conant GC, Wagner A (2004) Duplicate genes and robustness to transient gene knock-downs in Caenorhabditis elegans. Proc Biol Sci 271:89–96PubMedGoogle Scholar
  18. Cossegal M, Chambrier P, Mbelo S, Balzergue S, Martin-Magniette ML, Moing A, Deborde C, Guyon V, Perez P, Rogowsky P (2008) Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels. Plant Physiol 146:1553–1570PubMedGoogle Scholar
  19. Cross JM, Clancy M, Shaw JR, Boehlein SK, Greene TW, Schmidt RR, Okita TW, Hannah LC (2005) A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits. Plant J 41:501–511PubMedGoogle Scholar
  20. De Mita S, Santoni S, Hochu I, Ronfort J, Bataillon T (2006) Molecular evolution and positive selection of the symbiotic gene NORK in Medicago truncatula. J Mol Evol 62:234–244PubMedGoogle Scholar
  21. Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346PubMedGoogle Scholar
  22. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedGoogle Scholar
  23. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321PubMedGoogle Scholar
  24. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH (2005) Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA 102:14338–14343PubMedGoogle Scholar
  25. Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci 39:1622–1630Google Scholar
  26. Falque M, Decousset L, Dervins D, Jacob AM, Joets J, Martinant JP, Raffoux X, Ribiere N, Ridel C, Samson D, Charcosset A, Murigneux A (2005) Linkage mapping of 1454 new maize candidate gene Loci. Genetics 170:1957–1966PubMedGoogle Scholar
  27. Fan L, Bao J, Wang Y, Yao J, Gui Y, Hu W, Zhu J, Zeng M, Li Y, Xu Y (2009) Post-domestication selection in the maize starch pathway. PLoS ONE 4:e7612PubMedGoogle Scholar
  28. Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413PubMedGoogle Scholar
  29. Flint-Garcia S, Bodnar A, Scott M (2009) Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. TAG Theor Appl Genet 119:1129–1142Google Scholar
  30. Frueauf JB, Ballicora MA, Preiss J (2003) ADP-glucose pyrophosphorylase from potato tuber: site-directed mutagenesis of homologous aspartic acid residues in the small and large subunits. Plant J 33:503–511PubMedGoogle Scholar
  31. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  32. Fu YX, Li WH (1993) Maximum likelihood estimation of population parameters. Genetics 134:1261–1270PubMedGoogle Scholar
  33. Fu Y, Ballicora MA, Leykam JF, Preiss J (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biol Chem 273:25045–25052PubMedGoogle Scholar
  34. Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pe ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635PubMedGoogle Scholar
  35. Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479PubMedGoogle Scholar
  36. Georgelis N, Braun EL, Shaw JR, Hannah LC (2007) The two AGPase subunits evolve at different rates in angiosperms, yet they are equally sensitive to activity-altering amino acid changes when expressed in bacteria. Plant Cell 19:1458–1472PubMedGoogle Scholar
  37. Georgelis N, Braun EL, Hannah LC (2008) Duplications and functional divergence of ADP-glucose pyrophosphorylase genes in plants. BMC Evol Biol 8:232PubMedGoogle Scholar
  38. Georgelis N, Shaw J, Hannah L (2009) Phylogenetic analysis of ADP-glucose pyrophosphorylase subunits reveals a role of subunit interfaces in the allosteric properties of the enzyme. Plant Physiol 151:67PubMedGoogle Scholar
  39. Giroux MJ, Hannah LC (1994) ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize. Mol Gen Genet 243:400–408PubMedGoogle Scholar
  40. Giroux M, Smith-White B, Gilmore V, Hannah LC, Preiss J (1995) The large subunit of the embryo isoform of ADP glucose pyrophosphorylase from maize. Plant Physiol 108:1333–1334PubMedGoogle Scholar
  41. Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T, Hannah LC (1996) A single mutation that increases maize seed weight. Proc Natl Acad Sci USA 93:5824–5829PubMedGoogle Scholar
  42. Glémin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication. New Phytol 183:273–290PubMedGoogle Scholar
  43. Hakes L, Lovell SC, Oliver SG, Robertson DL (2007) Specificity in protein interactions and its relationship with sequence diversity and coevolution. Proc Natl Acad Sci USA 104:7999–8004PubMedGoogle Scholar
  44. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  45. Hannah LC, Shaw JR, Giroux MJ, Reyss A, Prioul JL, Bae JM, Lee JY (2001) Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase. Plant Physiol 127:173–183PubMedGoogle Scholar
  46. Hanson MA, Gaut BS, Stec AO, Fuerstenberg SI, Goodman MM, Coe EH, Doebley JF (1996) Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics 143:1395–1407PubMedGoogle Scholar
  47. Haudry A, Cenci A, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24(7):1506–1517PubMedGoogle Scholar
  48. Hendriks JHM, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133:838–849PubMedGoogle Scholar
  49. Hey J, Wakeley J (1997) A coalescent estimator of the population recombination rate. Genetics 145:833–846PubMedGoogle Scholar
  50. Hickman MA, Rusche LN (2007) Substitution as a mechanism for genetic robustness: the duplicated deacetylases Hst1p and Sir2p in Saccharomyces cerevisiae. PLoS Genet 3:e126PubMedGoogle Scholar
  51. Hudson RR, Boos DD, Kaplan NL (1992) A statistical test for detecting geographic subdivision. Mol Biol Evol 9:138–151PubMedGoogle Scholar
  52. Hwang S-K, Salamone PR, Okita TW (2005) Allosteric regulation of the higher plant ADP-glucose pyrophosphorylase is a product of synergy between the two subunits. FEBS Lett 579:983–990PubMedGoogle Scholar
  53. Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671PubMedGoogle Scholar
  54. Jaenicke-Despres V, Buckler ES, Smith BD, Gilbert MT, Cooper A, Doebley J, Paabo S (2003) Early allelic selection in maize as revealed by ancient DNA. Science 302:1206–1208PubMedGoogle Scholar
  55. Kavakli IH, Park JS, Slattery CJ, Salamone PR, Frohlick J, Okita TW (2001) Analysis of allosteric effector binding sites of potato ADP-glucose pyrophosphorylase through reverse genetics. J Biol Chem 276:40834–40840PubMedGoogle Scholar
  56. Kilian B, Özkan H, Kohl J, von Haeseler A, Barale F, Deusch O, Brandolini A, Yucel C, Martin W, Salamini F (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genomics 276:230–241PubMedGoogle Scholar
  57. Kim D, Hwang S-K, Okita TW (2007) Subunit interactions specify the allosteric regulatory properties of the potato tuber ADP-glucose pyrophosphorylase. Biochem Biophys Res Commun 362:301–306PubMedGoogle Scholar
  58. Lee YM, Preiss J (1986) Covalent modification of substrate-binding sites of Escherichia coli ADP-glucose synthetase. Isolation and structural characterization of 8-azido-ADP-glucose-incorporated peptides. J Biol Chem 261:1058–1064PubMedGoogle Scholar
  59. Linebarger CRL, Boehlein SK, Sewell AK, Shaw J, Hannah LC (2005) Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit. Plant Physiol 139:1625–1634PubMedGoogle Scholar
  60. Liu A, Burke JM (2006) Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics 173:321–330PubMedGoogle Scholar
  61. Manicacci D, Falque M, Le Guillou S, PiÈgu B, Henry A-M, Le Guilloux M, Damerval C, De Vienne D (2007) Maize Sh2 gene is constrained by natural selection but escaped domestication. J Evol Biol 20:503–516PubMedGoogle Scholar
  62. Manicacci D, Camus-Kulandaivelu L, Fourmann M, Arar C, Barrault S, Rousselet A, Feminias N, Consoli L, Frances L, Mechin V, Murigneux A, Prioul JL, Charcosset A, Damerval C (2009) Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize. Plant Physiol 150:506–520PubMedGoogle Scholar
  63. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084PubMedGoogle Scholar
  64. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654PubMedGoogle Scholar
  65. McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241PubMedGoogle Scholar
  66. Myers AM, Morell MK, James MG, Ball SG (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol 122:989–997PubMedGoogle Scholar
  67. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, p 256Google Scholar
  68. Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379PubMedGoogle Scholar
  69. Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218PubMedGoogle Scholar
  70. Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806PubMedGoogle Scholar
  71. Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101:9885–9890PubMedGoogle Scholar
  72. Pan D (2000) Starch synthesis in maize. In: Gupta AK, Kaur N (eds) Carbohydrate reserves in plants: synthesis and regulation. Elsevier, Amsterdam, pp 125–146Google Scholar
  73. Patron NJ, Keeling PJ (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41:1131Google Scholar
  74. Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA 98:2101–2103PubMedGoogle Scholar
  75. Prioul JL, Jeannette E, Reyss A, Grégory N, Giroux M, Hannah LC, Causse M (1994) Expression of ADP-glucose pyrophosphorylase in maize (Zea mays L.) grain and source leaf during grain filling. Plant Physiol 104:179–187PubMedGoogle Scholar
  76. Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction to Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106(5):895–903PubMedGoogle Scholar
  77. Rosti S, Denyer K (2007) Two paralogous genes encoding small subunits of ADP-glucose pyrophosphorylase in maize, Bt2 and L2, replace the single alternatively spliced gene found in other cereal species. J Mol Evol 65:316–327PubMedGoogle Scholar
  78. Rozas J (2009) DNA sequence polymorphism analysis using DnaSP. Methods Mol Biol 537:337–350PubMedGoogle Scholar
  79. Shaw JR, Hannah LC (1992) Genomic Nucleotide Sequence of a Wild-Type Shrunken-2 Allele of Zea mays. Plant Physiol 98:1214–1216PubMedGoogle Scholar
  80. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241PubMedGoogle Scholar
  81. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  82. Teas H, Teas A (1953) Heritable characters in maize. Description and linkage of brittle endosperm-2. J Hered 44:156–158Google Scholar
  83. Tenaillon MI, Tiffin PL (2008) The quest for adaptive evolution: a theoretical challenge in a maze of data. Curr Opin Plant Biol 11:110–115Google Scholar
  84. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166PubMedGoogle Scholar
  85. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21:1214–1225PubMedGoogle Scholar
  86. Teshima KM, Coop G, Przeworski M (2006) How reliable are empirical genomic scans for selective sweeps? Genome Res 16:702–712PubMedGoogle Scholar
  87. The Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796Google Scholar
  88. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedGoogle Scholar
  89. Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655PubMedGoogle Scholar
  90. Villand P, Olsen OA, Kleczkowski LA (1993) Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana. Plant Mol Biol 23:1279–1284PubMedGoogle Scholar
  91. Vollbrecht E, Springer PS, Goh L, ESt Buckler, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126PubMedGoogle Scholar
  92. Wagner A (2005) Robustness, evolvability, and neutrality. FEBS Lett 579:1772–1778PubMedGoogle Scholar
  93. Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719PubMedGoogle Scholar
  94. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276PubMedGoogle Scholar
  95. Weber A, Clark RM, Vaughn L, Sanchez-Gonzalez Jde J, Yu J, Yandell BS, Bradbury P, Doebley J (2007) Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis). Genetics 177:2349–2359PubMedGoogle Scholar
  96. Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland, MAGoogle Scholar
  97. Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99:12959–12962PubMedGoogle Scholar
  98. Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733PubMedGoogle Scholar
  99. Wright SI, Charlesworth B (2004) The HKA test revisited: a maximum-likelihood-ratio test of the standard neutral model. Genetics 168:1071–1076PubMedGoogle Scholar
  100. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314PubMedGoogle Scholar
  101. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530PubMedGoogle Scholar
  102. Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullen MD (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859–2872PubMedGoogle Scholar
  103. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591PubMedGoogle Scholar
  104. Yeang CH, Haussler D (2007) Detecting coevolution in and among protein domains. PLoS Comput Biol 3:e211PubMedGoogle Scholar
  105. Zeeman SC, Smith SM, Smith AM (2007) The diurnal metabolism of leaf starch. Biochem J 401:13–28PubMedGoogle Scholar
  106. Zhao Q, Thuillet AC, Uhlmann NK, Weber A, Rafalski JA, Allen SM, Tingey S, Doebley J (2008) The role of regulatory genes during maize domestication: evidence from nucleotide polymorphism and gene expression. Genetics 178:2133–2143PubMedGoogle Scholar
  107. Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • J. Corbi
    • 1
  • M. Debieu
    • 2
    • 3
  • A. Rousselet
    • 4
  • P. Montalent
    • 4
  • M. Le Guilloux
    • 1
  • D. Manicacci
    • 2
  • M. I. Tenaillon
    • 1
  1. 1.CNRS, UMR 0320/UMR 8120 Génétique VégétaleGif sur YvetteFrance
  2. 2.Université Paris Sud, UMR 0320/UMR 8120 Génétique VégétaleGif sur YvetteFrance
  3. 3.Department of Plant Breeding and GeneticsMax-Planck Institute for Plant Breeding ResearchCologneGermany
  4. 4.INRA, UMR 0320/UMR 8120 Génétique VégétaleGif sur YvetteFrance

Personalised recommendations