Theoretical and Applied Genetics

, Volume 122, Issue 1, pp 189–197

Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D

Original Paper

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars is the most effective approach to control the disease, but only a few genes confer effective all-stage resistance against the current populations of the pathogen worldwide. It is urgent to identify new genes for diversifying sources of resistance genes and for pyramiding genes for different types of resistance in order to achieve high levels of durable resistance for sustainable control of stripe rust. The common spring wheat genotype ‘PI 181434’, originally from Afghanistan, was resistant in all greenhouse and field tests in our previous studies. To identify the resistance gene(s) PI 181434 was crossed with susceptible genotype ‘Avocet Susceptible’. Adult plants of 103 F2 progeny were tested in the field under the natural infection of P. striiformis f. sp. tritici. Seedlings of the parents, F2 and F3 were tested with races PST-100 and PST-127 of the pathogen under controlled greenhouse conditions. The genetic study showed that PI 181434 has a single dominant gene conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the gene. A linkage map of 8 RGAP and 2 SSR markers was constructed for the gene using data from the 103 F2 plants and their derived F3 lines tested in the greenhouse. Amplification of the complete set of nulli-tetrasomic lines and selected ditelosomic lines of Chinese Spring with an RGAP marker and the two SSR markers mapped the gene on the long arm of chromosome 3D. Because it is the first gene for stripe rust resistance mapped on chromosome 3DL and different from all previously named Yr genes, the gene in PI 181434 was designated Yr45. Polymorphism rates of the two closest flanking markers, Xwgp115 and Xwgp118, in 45 wheat genotypes were 73.3 and 82.2%, respectively. Single nucleotide polymorphisms (SNPs) were identified in the eight wheat genotypes sharing both flanking markers. The RGAP markers and potential SNP markers should be useful in incorporating the gene into wheat cultivars and in pyramiding it with other genes for durable resistance.

References

  1. Castro AJ, Chen XM, Hayes PM, Knapp SJ, Line RF, Toojinda T, Vivar H (2002) Coincident QTL which determine seedling and adult plant resistance to stripe rust in barley. Crop Sci 42:1701–1708CrossRefGoogle Scholar
  2. Chen XM (2005) Epidemiology and control of stripe rust on wheat. Can J Plant Pathol 27:314–337CrossRefGoogle Scholar
  3. Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agric Res 58:648–655CrossRefGoogle Scholar
  4. Chen XM, Line RF (1992a) Inheritance of stripe rust resistance in wheat cultivars used to different races of Puccinia striiformis in North America. Phytopathology 82:633–637CrossRefGoogle Scholar
  5. Chen XM, Line RF (1992b) Identification of stripe rust resistance genes in wheat genotypes used to different North American races of Puccinia striiformis. Phytopathology 82:1428–1434CrossRefGoogle Scholar
  6. Chen XM, Line RF (1995a) Gene action in wheat cultivars for durable, high-temperature, adult-plant resistance and interaction with race-specific, seedling resistance to Puccinia striiformis. Phytopathology 85:567–572CrossRefGoogle Scholar
  7. Chen XM, Line RF (1995b) Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant (HTAP) resistance and interaction of HTAP and race-specific seedling resistance to Puccinia striiformis. Phytopathology 85:573–578CrossRefGoogle Scholar
  8. Chen XM, Line RF, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345–355CrossRefGoogle Scholar
  9. Chen XM, Moore M, Milus EA, Long D, Marshall D, Line RF, Jackson L (2002) Wheat stripe rust epidemic and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis 86:39–46CrossRefGoogle Scholar
  10. Cheng P, Chen XM (2010) Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor Appl Genet 121:195–204CrossRefPubMedGoogle Scholar
  11. Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750CrossRefPubMedGoogle Scholar
  12. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  13. Lin F, Chen XM (2007) Genetic and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287CrossRefPubMedGoogle Scholar
  14. Lin F, Chen XM (2008) Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivars Express. Theor Appl Genet 116:797–806CrossRefPubMedGoogle Scholar
  15. Lin F, Chen XM (2009) Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 118:631–642CrossRefPubMedGoogle Scholar
  16. Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with Mapmarker/EXP3.0. Whitehead Institute Techn Rep, 3rd edn. Whitehead Institute, CambridgeGoogle Scholar
  17. Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118CrossRefPubMedGoogle Scholar
  18. Line RF, Chen XM (1995) Success in breeding for and managing durable resistance to wheat rusts. Plant Dis 79:1254–1255Google Scholar
  19. Line RF, Chen XM (1996) Wheat and barley stripe rust in North America. In: Proc 9th European and Mediterranean cereal rusts and powdery mildews conf, 2–6 September 1996, Lunteren, The Netherlands, pp 101–104Google Scholar
  20. Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races (of the causes of stripe rust of wheat) in North America, 1968–1987. Tech Bull US Dept Agric No. 1788Google Scholar
  21. McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers DJ, Anderson OA (2007) Catalogue of gene symbol for wheat: 2007 supplement. http://wheat.pw.usda.gov/ggpages/awn/53/Textfiles/WGC.html
  22. McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2009) Catalogue of gene symbols for wheat: 2009 supplement. Available online at http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2009.pdf
  23. Milus EA, Line RF (1986a) Number of genes controlling high-temperature, adult-plant resistance to stripe rust in wheat. Phytopathology 76:93–96CrossRefGoogle Scholar
  24. Milus EA, Line RF (1986b) Gene action for inheritance of durable, high-temperature, adult-plant resistance to stripe rust in wheat. Phytopathology 76:435–441CrossRefGoogle Scholar
  25. Nagarajan S, Nayar SK, Bahadur P (1986) Race 13 (67 S8) virulent on Triticum spelta var. album in India. Plant Dis 70:173CrossRefGoogle Scholar
  26. Pahalawatta V, Chen XM (2005) Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens. Phytopathology 95:427–432CrossRefPubMedGoogle Scholar
  27. Qayoum A, Line RF (1985) High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75:1121–1125CrossRefGoogle Scholar
  28. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:207–333Google Scholar
  29. Shi ZX, Chen XM, Line RF, Leung H, Wellings CR (2001) Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 44:509–516CrossRefPubMedGoogle Scholar
  30. Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155CrossRefGoogle Scholar
  31. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114CrossRefPubMedGoogle Scholar
  32. Stubbs RW (1985) Stripe rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol Vol II. Academic Press, New York, pp 61–101Google Scholar
  33. Sui XX, Wang MN, Chen XM (2009) Molecular mapping of a stripe rust resistance gene in spring wheat genotype ‘Zak’. Phytopathology 99:1209–1215CrossRefPubMedGoogle Scholar
  34. Toojinda T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Ramsay L, Vivar H, Waugh R (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet 101:580–589CrossRefGoogle Scholar
  35. Wellings CR, McIntosh RA (1990) Puccinia striiformis f. sp. tritici in Australia: pathogenic changes during the first 10 years. Plant Pathol 39:316–325CrossRefGoogle Scholar
  36. Yan GP, Chen XM (2006) Molecular mapping of a recessive gene for resistance to stripe rust in barley. Theor Appl Genet 113:529–537CrossRefPubMedGoogle Scholar
  37. Yan GP, Chen XM (2007) Molecular mapping of the rps1.a recessive gene for resistance to stripe rust in BBA 2890 barley. Phytopathology 97:668–673CrossRefPubMedGoogle Scholar
  38. Yan GP, Chen XM (2008) Identification of a quantitative trait locus for high-temperature adult-plant resistance against Puccinia striiformis f. sp. hordei in ‘Bancroft’ barley. Phytopathology 98:120–127CrossRefPubMedGoogle Scholar
  39. Yan GP, Chen XM, Line RF, Wellings CR (2003) Resistance gene analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643PubMedGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Q. Li
    • 1
    • 2
  • X. M. Chen
    • 2
    • 3
  • M. N. Wang
    • 2
  • J. X. Jing
    • 1
  1. 1.College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for AgricultureNorthwest A&F UniversityYanglingChina
  2. 2.Department of Plant PathologyWashington State UniversityPullmanUSA
  3. 3.Wheat Genetics, Quality Physiology and Disease Research UnitAgricultural Research Service, US Department of AgriculturePullmanUSA

Personalised recommendations