Theoretical and Applied Genetics

, Volume 121, Issue 8, pp 1569–1585 | Cite as

The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin

  • Guido Cipriani
  • Alessandro Spadotto
  • Irena Jurman
  • Gabriele Di Gaspero
  • Manna Crespan
  • Stefano Meneghetti
  • Enrica Frare
  • Rita Vignani
  • Mauro Cresti
  • Michele Morgante
  • Mario Pezzotti
  • Enrico Pe
  • Alberto Policriti
  • Raffaele TestolinEmail author
Original Paper


A collection of 1005 grapevine accessions was genotyped at 34 microsatellite loci (SSR) with the aim of analysing genetic diversity and exploring parentages. The comparison of molecular profiles revealed 200 groups of synonymy. The removal of perfect synonyms reduced the database to 745 unique genotypes, on which population genetic parameters were calculated. The analysis of kinship uncovered 74 complete pedigrees, with both parents identified. Many of these parentages were not previously known and are of considerable historical interest, e.g. Chenin blanc (Sauvignon × Traminer rot), Covè (Harslevelu selfed), Incrocio Manzoni 2–14 and 2–15 (Cabernet franc × Prosecco), Lagrein (Schiava gentile × Teroldego), Malvasia nera of Bolzano (Perera × Schiava gentile), Manzoni moscato (Raboso veronese × Moscato d’Amburgo), Moscato violetto (Moscato bianco × Duraguzza), Muscat of Alexandria (Muscat blanc à petit grain × Axina de tres bias) and others. Statistical robustness of unexpected pedigrees was reinforced with the analysis of an additional 7–30 SSRs. Grouping the accessions by profile resulted in a weak correlation with their geographical origin and/or current area of cultivation, revealing a large admixture of local varieties with those most widely cultivated, as a result of ancient commerce and population flow. The SSRs with tri- to penta-nucleotide repeats adopted for the present study showed a great capacity for discriminating amongst accessions, with probabilities of identity by chance as low as 1.45 × 10−27 and 9.35 × 10−12 for unrelated and full sib individuals, respectively. A database of allele frequencies and SSR profiles of 32 reference cultivars are provided.


Null Allele Core Collection Polymorphic Information Content Grapevine Variety Cabernet Franc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was financially supported by the Ministry of Agriculture and Forestry, project VIGNA, and by the Istituto di Genomica Applicata (IGA), Parco Scientifico e Tecnologico di Udine. The authors thank Alberto Stefan at IGA, who wrote several scripts for the management of input/output data, and Courtney Coleman at the University of Missouri State University for the critical review of the manuscript. Authors thank also Mirella Giust for field collection of samples, and Massimo Gardiman and Roberto Carraro for the visual inspection of genotypes of dubious identity.

Supplementary material

122_2010_1411_MOESM1_ESM.xls (79 kb)
S1 - List of accessions analysed in the present study (XLS 79 kb)
122_2010_1411_MOESM2_ESM.xls (38 kb)
S2 - Groups of synonymy found amongst 1005 grapevine accessions. Up to two mismatches were allowed for comparison of each pair (XLS 38 kb)
122_2010_1411_MOESM3_ESM.tif (1.8 mb)
S3 - Evolutionary relationships of 795 taxa. The evolutionary history was inferred using the UPGMA method. The optimal tree with the sum of branch length = 10,160 is shown. The tree is drawn to scale with branch lengths proportional to Nei’s genetic distances. Analyses were conducted using the MEGA4 software. Accessions were categorised according to either their putative geographic origin or the most relevant growing area. Accessions are labelled with different colours according to their geographical origin as in Fig. 2 (TIFF 1844 kb)
122_2010_1411_MOESM4_ESM.xls (22 kb)
S4 - List of complete pedigrees (both parents identified) found using the CERVUS software. Legend: VIVC, Vitis International Variety Catalogue at the URL; EVDB, European Vitis Data Base at the URL; Trio LOD, the Log-likelihood ratio for the parent–offspring relationship for the most likely candidate parent pair (XLS 22 kb)


  1. Akkak A, Boccacci P, Botta R (2007) ‘Cardinal’ grape parentage: a case of a breeding mistake. Genome 50:325–328CrossRefPubMedGoogle Scholar
  2. Alleweldt G, Spiegel-Roy P, Reisch (1990) Grapes (Vitis). In: Moore JN, Ballington JR Jr (eds) Genetic resources of temperate fruit and nut crops, vol I. ISHS, Leuven, pp 291–327Google Scholar
  3. Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14CrossRefGoogle Scholar
  4. Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, López MA, Arnold C, Ergul A, Söylemezoğlu G, Uzun HI, Cabello F, Ibáñez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Gorislavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L, ssp sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15(12):3707–3714CrossRefPubMedGoogle Scholar
  5. Bautista J, Dangl GS, Yang J, Reisch B, Stover E (2008) Use of genetic markers to assess pedigrees of grape cultivars and breeding program selections. Am J Enol Vitic 59(3):248–254Google Scholar
  6. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  7. Boursiquot JM, Lacombe T, Bowers J, Meredith C (2004) Le Gouais, un cépage clé du patrimoine viticole européen [Gouais, a key vine of the European wine heritage]. Bull l’OIV 77(875–876):5–19Google Scholar
  8. Bowers JE, Meredith CP (1997) The parentage of classic wine grape: Cabernet Sauvignon. Nat Genet 16:84–87CrossRefPubMedGoogle Scholar
  9. Bowers J, Boursiquot JM, This P, Chu K, Johansson M, Meredith C (1999) Historical genetics: the parentage of Chardonnay, Gamay and other wine grapes of Northeastern France. Science 285:1562–1565CrossRefPubMedGoogle Scholar
  10. Butler JM (2006) Genetics and genomics of core short tandem repeats loci used in human identity testing. J Forensic Sci 51(2):253–265CrossRefPubMedGoogle Scholar
  11. Calò A, Scienza A, Costacurta A (2001) Vitigni d’Italia. Calderini Edagricole, Bologna, ItalyGoogle Scholar
  12. Cancellier S, Roncador I (1997) Gli incroci Manzoni. La Tipografica 2000. Treviso, ItalyGoogle Scholar
  13. Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8:127CrossRefPubMedGoogle Scholar
  14. Cipriani G, Di Gaspero G, Canaguier A, Jusseaumes J, Tassin J, Lemainque A, Adam-Blondon AF, Testolin R (2009) Molecular linkage maps: Strategies, resources and achievements. In: Zapater MM, Adam-Blondon AF (eds) Grapes. Series on “Genomics of fruits and vegetables crops”, Series Editor: Chittaranjan Kole. Sciences Publishers, Enfield (in press)Google Scholar
  15. Costantini L, Monaco A, Vouillamoz J, Forlani M, Grando MS (2005) Genetic relationships among local Vitis vinifera cultivars from Campania (Italy). Vitis 44(1):25–34Google Scholar
  16. Crespan M (2003) The parentage of Muscat of Hamburg. Vitis 42:193–197Google Scholar
  17. Crespan M (2004) Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theor Appl Genet 108:231–237CrossRefPubMedGoogle Scholar
  18. Crespan M, Milani N (2001) The Muscats: a molecular analysis of synonyms, homonyms and genetic relationships within a large family of grapevine cultivars. Vitis 40(1):23–30Google Scholar
  19. Crespan M, Crespan G, Giannetto S, Meneghetti S, Costacurta A (2007) Vitouska’ is the progeny of ‘Prosecco tondo’ and ‘Malvasia bianca lunga. Vitis 46(4):192–194Google Scholar
  20. Crespan M, Calò A, Giannetto S, Sparacio A, Storchi P, Costacurta A (2008a) ‘Sangiovese’ and ‘Garganega’ are two key varieties of the Italian grapevine assortment evolution. Vitis 47(2):97–104Google Scholar
  21. Crespan M, Coletta A, Crupi P, Giannetto S, Antonacci D (2008b) Malvasia nera di Brindisi/Lecce’ grapevine cultivar (Vitis vinifera L.) originated from ‘Negroamaro’ and ‘Malvasia bianca lunga’. Vitis 47(4):205–212Google Scholar
  22. Di Vecchi Staraz M, Bandinelli R, Borselli M, This P, Boursiquot JM, Laucou V, Lacombe T (2007) Genetic structuring and parentage analysis for evolutionary studies in grapevine: kin group and origin of the cultivar Sangiovese revealed. J Amer Soc Hort Sci 132(4):514–524Google Scholar
  23. Ewen KR, Bahlo M, Treloar SA, Levinso DF, Mowry B, Barlow JW, Foote SJ (2000) Identification and analysis of error types in high-throughput genotyping. Am J Hum Genet 67:727–736CrossRefPubMedGoogle Scholar
  24. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587Google Scholar
  25. Galet P (2000) Dictionnaire encyclopedique des cépages. Hachette Pratique, Paris, FranceGoogle Scholar
  26. Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Heredity 92:93–94CrossRefGoogle Scholar
  27. Ibáñez J, Vargas AM, Palancar M, Borrego J, de Andrés MT (2009) Genetic relationships among table-grape varieties. Am J Enol Vitic 60(1):35–42Google Scholar
  28. Idury RM, Cardon LR (1997) A simple method for automated allele binning in microsatellite markers. Genome Res 7:1104–1109PubMedGoogle Scholar
  29. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pé E, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468CrossRefPubMedGoogle Scholar
  30. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106CrossRefPubMedGoogle Scholar
  31. Kloosterman AD, Budowle B, Daselaar P (1993) PCR-amplification and detection of the human DIS80 VNTR locus. Amplification conditions, population genetics and application in forensic analysis. Int J Leg Med 105:257–264CrossRefGoogle Scholar
  32. Konovalov DA, Manning C, Henshaw MT (2004) KINGROUP: a computer program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol Ecol Notes 4:779–782CrossRefGoogle Scholar
  33. Lacombe T, Boursiquot JM, Dechesne F, Varès D, This P (2007) Relationships and genetic diversity within the accessions related to Malvasia Held in the Domaine de Vassal Grape Germplasm Repository. Am J Enol Vitic 58(1):124–131Google Scholar
  34. Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp sativa. BMC Plant Biol 8:31CrossRefPubMedGoogle Scholar
  35. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655CrossRefPubMedGoogle Scholar
  36. Matsuoka Y, Vigouroux Y, Goodman MM, Jesus Sanchez G, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084CrossRefPubMedGoogle Scholar
  37. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedGoogle Scholar
  38. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  39. Olmo HP (1995) Grapes. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman, London, pp 485–490Google Scholar
  40. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  41. Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Non-amplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–252CrossRefPubMedGoogle Scholar
  42. Pritchard JK, Wen W (2004) Documentation for structure software, Version 2. Department of Human Genetics, University of Chicago, Chicago, USAGoogle Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multi-locus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  44. Reynolds J, Wier BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779PubMedGoogle Scholar
  45. Roncador I, Malossini U, Grando MS, Mattivi F, Nicolini G, Versini G (2002) Caratteristiche viti-enologiche dei nuovi vini Goldtraminer, Sennen e Gosen. Terra Trentina 48:28–36Google Scholar
  46. Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69CrossRefPubMedGoogle Scholar
  47. Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:10623–10627CrossRefPubMedGoogle Scholar
  48. Sefc KM, Steinkellner H, Glőssl J, Kampfer S, Regner F (1998) Reconstruction of a grapevine pedigree by microsatellite analysis. Theor Appl Genet 97:227–231CrossRefGoogle Scholar
  49. Sefc KM, Lopes MS, Lefort F, Botta R, Boubelakis-Angelakis KA, Ibañez J, Pejić I, Wagner HW, Glőssl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505CrossRefGoogle Scholar
  50. Summers K, Amos W (1997) Behavioral, ecological and molecular genetic analyses of reproductive strategies in the Amazonian dart-poison frog, Dendrobates ventrimaculatus. Behav Ecol 8:260–267CrossRefGoogle Scholar
  51. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  52. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibáñez J, Lacombe T, Laucou V, Magalhães R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458CrossRefPubMedGoogle Scholar
  53. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22(9):511–519CrossRefPubMedGoogle Scholar
  54. Vouillamoz JF, Grando MS (2006) Genealogy of wine grape cultivars: ‘Pinot’ is related to ‘Syrah’. Heredity 97:102–110CrossRefPubMedGoogle Scholar
  55. Vouillamoz JF, Monaco A, Costantini L, Stefanini M, Scienza A, Grando MS (2007) The parentage of ‘Sangiovese’, the most important Italian wine grape. Vitis 46(1):19–22Google Scholar
  56. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol Notes 10:249–256Google Scholar
  57. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354Google Scholar
  58. Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Guido Cipriani
    • 1
  • Alessandro Spadotto
    • 2
  • Irena Jurman
    • 2
  • Gabriele Di Gaspero
    • 1
    • 2
  • Manna Crespan
    • 3
  • Stefano Meneghetti
    • 3
  • Enrica Frare
    • 3
  • Rita Vignani
    • 4
  • Mauro Cresti
    • 4
  • Michele Morgante
    • 1
    • 2
  • Mario Pezzotti
    • 5
  • Enrico Pe
    • 6
  • Alberto Policriti
    • 2
    • 7
  • Raffaele Testolin
    • 1
    • 2
    Email author
  1. 1.Dipartimento di Scienze Agrarie e AmbientaliUniversity of UdineUdineItaly
  2. 2.Istituto di Genomica ApplicataParco Scientifico e Tecnologico Luigi DanieliUdineItaly
  3. 3.CRA-VIT, Centro di Ricerca per la ViticolturaConegliano (TV)Italy
  4. 4.Dipartimento di Scienze AmbientaliUniversity of SienaSienaItaly
  5. 5.Dipartimento di BiotecnologieUniversity of VeronaVeronaItaly
  6. 6.Scuola Superiore S. AnnaPisaItaly
  7. 7.Dipartimento di Matematica e Informatica (DIMI)University of UdineUdineItaly

Personalised recommendations