Theoretical and Applied Genetics

, Volume 121, Issue 8, pp 1441–1453 | Cite as

Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A

  • Namrata Singh
  • Trang T. M. Dang
  • Georgina V. Vergara
  • Dev Mani Pandey
  • Darlene Sanchez
  • C. N. Neeraja
  • Endang M. Septiningsih
  • Merlyn Mendioro
  • Evelyn Mae Tecson-Mendoza
  • Abdelbagi M. Ismail
  • David J. Mackill
  • Sigrid Heuer
Original Paper

Abstract

The major rice quantitative-trait locus Submergence 1 (Sub1) confers tolerance of submergence for about 2 weeks. To identify novel sources of tolerance, we have conducted a germplasm survey with allele-specific markers targeting SUB1A and SUB1C, two of the three transcription-factor genes within the Sub1 locus. The objective was to identify tolerant genotypes without the SUB1A gene or with the intolerant SUB1A-2 allele. The survey revealed that all tolerant genotypes possessed the tolerant Sub1 haplotype (SUB1A-1/SUB1C-1), whereas all accessions without the SUB1A gene were intolerant. Only the variety James Wee with the SUB1A-2 allele was moderately tolerant. However, some intolerant genotypes with the SUB1A-1 allele were identified and RT–PCR analyses were conducted to compare gene expression in tolerant and intolerant accessions. Initial analyses of leaf samples failed to reveal a clear association of SUB1A transcript abundance and tolerance. Temporal and spatial gene expression analyses subsequently showed that SUB1A expression in nodes and internodes associated best with tolerance across representative genotypes. In James Wee, transcript abundance was high in all tissues, suggesting that some level of tolerance might be conferred by high expression of the SUB1A-2 allele. To further assess tissue-specific expression, we have expressed the GUS reporter gene under the control of the SUB1A-1 promoter. The data revealed highly specific GUS expression at the base of the leaf sheath and in the leaf collar region. Specific expression in the growing part of rice leaves is well in agreement with the role of SUB1A in suppressing leaf elongation under submergence.

Supplementary material

122_2010_1400_MOESM1_ESM.xls (38 kb)
Supplementary Table (XLS 38 kb)

References

  1. Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annual Rev Plant Biol 59:313–339CrossRefGoogle Scholar
  2. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. In: Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, p 210Google Scholar
  3. Collard B, Mackill DJ (2008) Marker-assisted selection: an approach for precision breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572CrossRefPubMedGoogle Scholar
  4. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469CrossRefPubMedGoogle Scholar
  5. Dahl BE (1995) Development morphology of plants. In: Bedunah DJ, Sosebee RE (eds) Wildland plants: physiological ecology and developmental morphology. Society for Range Management, Denver, pp 22–58Google Scholar
  6. Das KK, Sarkar RK, Ismail AM (2005) Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci 168:131–136CrossRefGoogle Scholar
  7. Dey MM, Upadhyaya HK (1996) Yield loss due to drought, cold and submergence in Asia. In: Evenson R, Herdt R, Hossain M (eds) Rice research in Asia: progress, priorities. CAB International, Wallingford, pp 291–303Google Scholar
  8. Ella ES, Kawano N, Ito O (2003) Importance of active-scavenging system in the recovery of rice seedlings alter submergence. Plant Sci 165:85–93CrossRefGoogle Scholar
  9. FAO (2003) Sustainable rice production for food security. In: Proceedings of the 20th session of the International Rice Commission. http://www.fao.org/docrep/006/y4751e/y4751e00.HTM
  10. Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Maddalena Altamura M, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219CrossRefPubMedGoogle Scholar
  11. Fukao T, Bailey-Serres J (2007) Ethylene—a key regulator of submergence responses in rice. Plant Sci 175:43–51CrossRefGoogle Scholar
  12. Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105:16814–16819CrossRefPubMedGoogle Scholar
  13. Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell (18):2021–2034Google Scholar
  14. Hattori Y, Nagai K, Furukawa S, Song X-J, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030CrossRefPubMedGoogle Scholar
  15. Hoekema A, Roelvink PW, Hooykaas PJJ, Schilperoort RA (1984) Delivery of T-DNA from the Agrobacterium tumefaciens chromosome into plant cells. EMBO J 3:2485–2490PubMedGoogle Scholar
  16. Lee Y, Kende H (2002) Expression of expansin and expansin-like genes in deepwater rice. Plant Physiol 130:1396–1405CrossRefPubMedGoogle Scholar
  17. Mazaredo AM, Vergara BS (1982) Physiological differences in rice varieties tolerant of and susceptible to complete submergence. In: Proceedings of the 1981 international deepwater rice workshop. IRRI, Los Baños, Philippines, pp 327–341Google Scholar
  18. Nandi S, Subudhi PK, Senadhira D, Manigbas NL, Sen-Mandi S, Huang N (1997) Mapping QTL for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255:1–8CrossRefPubMedGoogle Scholar
  19. Neeraja C, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard B, Septiningsih E, Vergara G, Sanchez D, Xu K, Ismail A, Mackill D (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776CrossRefPubMedGoogle Scholar
  20. Pallotta MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ (2000) RFLP mapping of manganese efficiency in barley. Theor Appl Genet 101:1100–1108CrossRefGoogle Scholar
  21. Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura SI, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 80-hydroxylase in rice. Plant Cell Physiol 48(2):287–298CrossRefPubMedGoogle Scholar
  22. Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18(4):992–1002CrossRefPubMedGoogle Scholar
  23. Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160CrossRefPubMedGoogle Scholar
  24. Singh S, Mackill DJ, Ismail AM (2009) Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Res 113:12–23CrossRefGoogle Scholar
  25. Toojinda T, Siangliw M, Tragoonrung S, Vananvichit A (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 91:243–253CrossRefPubMedGoogle Scholar
  26. Widawsky D, O’Toole JC (1990) Prioritizing the rice biotechnology research agenda for Western India. The Rockefeller Foundation, New YorkGoogle Scholar
  27. Wise AA, Liu L, Binns AN (2006) Culture and maintenance of Agrobacterium strains. Methods Mol Biol 343:3–14PubMedGoogle Scholar
  28. Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224CrossRefGoogle Scholar
  29. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-responsive-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Namrata Singh
    • 1
  • Trang T. M. Dang
    • 1
  • Georgina V. Vergara
    • 1
  • Dev Mani Pandey
    • 2
  • Darlene Sanchez
    • 1
  • C. N. Neeraja
    • 3
  • Endang M. Septiningsih
    • 1
  • Merlyn Mendioro
    • 4
  • Evelyn Mae Tecson-Mendoza
    • 4
  • Abdelbagi M. Ismail
    • 1
  • David J. Mackill
    • 1
  • Sigrid Heuer
    • 1
  1. 1.Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI)Metro ManilaPhilippines
  2. 2.Birla Institute of TechnologyMesra, RanchiIndia
  3. 3.Directorate of Rice ResearchHyderabadIndia
  4. 4.University of the Philippines Los Baños (UPLB)Los BanosPhilippines

Personalised recommendations