Theoretical and Applied Genetics

, Volume 121, Issue 7, pp 1339–1356 | Cite as

Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench)

  • E. S. MaceEmail author
  • D. R. Jordan
Original Paper


Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access.


Quantitative Trait Locus Sorghum DArT Marker RFLP Marker Projection Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the assistance of Scott Chapman and Jiankang Wang for their assistance in setting up the Qu-Gene simulations, and to Jerry Franckowiak, Mandy Christopher, Barbara George-Jaeglli, Alan Cruickshank, Rex Williams and Scott Chapman for their critical review of the manuscript. We would also like to acknowledge the Australian Grains Research and Development Cooperation (GRDC; for contributing part of the funding for this research.

Supplementary material

122_2010_1392_MOESM1_ESM.doc (4.2 mb)
Locus positions in the consensus map. Table containing a list of all consensus map loci and their features; data include the chromosome and position of each locus and multicopy marker details. (DOC 4302 kb)


  1. Abdi A, Bekele E, Asfaw Z, Teshome A (2002) Patterns of morphological variation of sorghum (Sorghum bicolor (L.) Moench) landraces in qualitative characters in North Shewa and South Welo, Ethiopia. Hereditas 137:161–172CrossRefGoogle Scholar
  2. Altschul S, Gish W, Miller WP, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Ayyangar GNR, Ponnaiya BWX (1941) The occurence and inheritance of a bloomless sorghum. Curr Sci 10:408Google Scholar
  4. Ayyangar GNR, Vijiaraghavan C, Pillai VG, Ayyar MAS (1933a) Inheritance of characters in sorghum—the great millet. II. Purple pigmentation on leaf-sheath and glume. Indian J Agric Sci 3:589–604Google Scholar
  5. Ayyangar GNR, Vijiaraghavan C, Ayyar MAS, Rao VP (1933b) Inheritance of characters in sorghum. III. Grain colours red, yellow, white. Indian J Agric Sci 3:594–604Google Scholar
  6. Ayyangar GNR, Vijiaraghavan C, Ayyar MAS, Rao VP (1934) Inheritance of characters in sorghum—the great millet. VI. Pearly and chalky grains. Indian J Agric Sci 4:96–99Google Scholar
  7. Ayyangar GNR, Ayyar MAS, Rao VP, Nambiar AK (1935) Inheritance of characters in sorghum, the great millet. VII. Ligule and auricle. Indian J Agric Sci 5:539–541Google Scholar
  8. Bennetzen JL, Subramanian V, Xu J, Salimath SS, Subramaniam S, Bhattramakki D, Hart GE (2001) A framework genetic map of sorghum containing RFLP, SSR and morphological markers. In: Phillips RL, Vasil IK (eds) DNA-based Markers in Plants. Kluwer, Dordrecht, pp 347–355Google Scholar
  9. Blaney BJ, McKenzie RA, Josey BJ, Ryley MJ, Downing JA (2000) Effect of grazing sorghum (Sorghum bicolor) infected with ergot (Claviceps africana) on beef cattle. Aust Vet J 78:124–125PubMedCrossRefGoogle Scholar
  10. Boivin K, Deu M, Rami JF, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328CrossRefGoogle Scholar
  11. Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Gen 269:205–214Google Scholar
  12. Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li ZK, Lin YR, Liu SC, Luo LJ, Marler BS, Ming RG, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386PubMedGoogle Scholar
  13. Brengman RL (1995) The Rf 1 gene in grain sorghum and its potential use in alternative breeding methods. Queensland Department of Primary Industries Monograph Series “Information Series”Google Scholar
  14. Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637PubMedCrossRefGoogle Scholar
  15. Burow GB, Franks CD, Acosta-Martinez V, Xin ZG (2009) Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.). Theor Appl Genet 118:423–431PubMedCrossRefGoogle Scholar
  16. Chantereau J, Trouche G, Rami JF, Deu M, Barro C, Grivet L (2001) RFLP mapping of QTLs for photoperiod response in tropical sorghum. Euphytica 120:183–194CrossRefGoogle Scholar
  17. Childs KL, Miller FR, CordonnierPratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma(3), encodes a phytochrome B. Plant Physiol 113:611–619PubMedCrossRefGoogle Scholar
  18. Coleman OH, Dean JL (1961) The inheritance of resistance to rust in sorgo. Crop Sci 1:152–154CrossRefGoogle Scholar
  19. Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang ZW, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH (2002) Genetic, physical, and informatics resources for maize on the road to an integrated map. Plant Physiol 130:1598–1605PubMedCrossRefGoogle Scholar
  20. Crasta OR, Xu WW, Nguyen HT, Rosenow DT, Mullet J (1999) Mapping of post flowering drought resistance traits in grain sorghum: Association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588PubMedCrossRefGoogle Scholar
  21. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:385–388CrossRefGoogle Scholar
  22. Doggett H (1970) Sorghum. Longmans, LondonGoogle Scholar
  23. Doggett H, Eberhart SA (1968) Recurrent selection in sorghum. Crop Sci 8:119–121CrossRefGoogle Scholar
  24. Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, Lanaud C, Glaszmann JC, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418CrossRefGoogle Scholar
  25. Duncan RR (1988) Sequential development of acid soil tolerant sorghum genotypes under field stress conditions. Comm Soil Sci Plant Anal 19:1295–1305CrossRefGoogle Scholar
  26. Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intraspecific sorghum populations. Theor Appl Genet 112:1295–1305PubMedCrossRefGoogle Scholar
  27. Finlayson SA (2007) Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol 48:667–677PubMedCrossRefGoogle Scholar
  28. Frederiksen R (1986) Head Smut. In: Frederiksen RA, Odvody GN (eds) Compendium of Sorghum Diseases. American Phytopathology Society, St. Paul, pp 17–18Google Scholar
  29. Gowda PSB, Xu GW, Frederiksen RA, Magill CW (1995) DNA markers for downy mildew resistance genes in sorghum. Genome 38:823–826PubMedCrossRefGoogle Scholar
  30. Graham RJD (1916) Pollination and cross-fertilisation in the juar plant (Andropogon sorghum, Brot.). Mem Dept Agric Ind Bot Ser 8:201–216Google Scholar
  31. Grenier C, Ejeta G, Bramel PJ, Dahlberg JA, El-Ahmadi A, Mahmoud M, Peterson GC, Rosenow DT (2004) Sorghums of the Sudan: analysis of regional diversity and distribution. Genetic Resour Crop Evol 51:489–500CrossRefGoogle Scholar
  32. Gupta HS, Agrawal PK, Mahajan V, Bisht GS, Kumar A, Verma P, Srivastava A, Saha S, Babu R, Pant MC, Mani VP (2009) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237Google Scholar
  33. Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338PubMedCrossRefGoogle Scholar
  34. Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242CrossRefGoogle Scholar
  35. Hash CT, Raj AGB, Lindup S, Sharma A, Beniwal CR, Folkertsma RT, Mahalakshmi V, Zerbini E, Blummel M (2003) Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crops Res 84:79–88CrossRefGoogle Scholar
  36. Hausmann BIG, Hess DE, Seetharama N, Welz HG, Geiger HH (2002) Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP and RAPD markers, and comparison with other sorghum maps. Theor Appl Genet 105:629–637CrossRefGoogle Scholar
  37. Henzell RG (1977) Sugarcane mosaic virus resistance breeding in sorghum. In: Downes RW (ed) Sorghum, millet and maize breeding: proceedings of the 3rd international congress of the society for advancing breeding research in Asia and Oceania. CSIRO, Canberra, p 8Google Scholar
  38. Hillel J, Schaap T, Haberfield AH, Jeffreys A, Plotzky Y, Cahaner A, Lavi U (1990) DNA fingerprints applied to gene introgression in breeding programs. Genetics 124:783–789PubMedGoogle Scholar
  39. Hilson GR (1916) On the inheritance of certain stem characters in sorghum. Agric J India 11:150Google Scholar
  40. House LR (1985) A guide to sorghum breeding, 2nd edn. International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), PatancheruGoogle Scholar
  41. Jordan DR, Tao YZ, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2004) Comparison of identity by descent and identity by state for detecting genetic regions under selection in a sorghum pedigree breeding program. Mol Breed 14:441–454CrossRefGoogle Scholar
  42. Jordan DR, Mace ES, Henzell RG, Klein PE, Klein RR (2010) Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet (in press)Google Scholar
  43. Karper RE (1932) A dominant mutation of frequent recurrence in sorghum. Am Nat 66:511–529CrossRefGoogle Scholar
  44. Karper RE (1933) Inheritance of waxy endosperm in sorghum. J Hered 24:257–262Google Scholar
  45. Karper RE, Quinby JR (1947) The inheritance of callus formation and seed shedding in sorghum. J Hered 38:211–214PubMedGoogle Scholar
  46. Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276CrossRefGoogle Scholar
  47. Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B repressed Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117PubMedCrossRefGoogle Scholar
  48. Kim JS (2003) Genomic analysis of sorghum by fluorescence in situ hybridisation. Texas A&M UniversityGoogle Scholar
  49. Klein RR, Klein PE, Chhabra AK, Dong J, Pammi S, Childs KL, Mullet JE, Rooney WL, Schertz KF (2001a) Molecular mapping of the Rf1 gene for pollen fertility restoration in sorghum (Sorghum bicolor L.). Theor Appl Genet 102:1206–1212CrossRefGoogle Scholar
  50. Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PA, Yu ZH, Rooney WL (2001b) Identification of genomic regions that affect grain-mold incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319CrossRefGoogle Scholar
  51. Klein RR, Klein PE, Mullet J, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111:994–1012PubMedCrossRefGoogle Scholar
  52. Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WL, Menz MA, Franks CD, Klein PE (2008) The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Sci 48:S12–S26CrossRefGoogle Scholar
  53. Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587PubMedCrossRefGoogle Scholar
  54. Kullaiswamy BY, Goud JV (1983) New genes for awning in sorghum [Sorghum bicolour (L.) Moench]. Madras Agric J 70:335–359Google Scholar
  55. Lin Y-R, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411PubMedGoogle Scholar
  56. Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26PubMedCrossRefGoogle Scholar
  57. Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13PubMedCrossRefGoogle Scholar
  58. Magalhaes JV, Garvin DF, Wang YH, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167:1905–1914PubMedCrossRefGoogle Scholar
  59. Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genetics 39:1156–1161CrossRefGoogle Scholar
  60. McIntyre CL, Hermann SM, Casu RE, Knight D, Drenth J, Tao Y, Brumbley SM, Godwin ID, Williams S, Smith GR, Manners JM (2004) Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theor Appl Genet 109:875–883PubMedCrossRefGoogle Scholar
  61. McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, Croft BJ, Jordan DR, Manners JM (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400PubMedCrossRefGoogle Scholar
  62. McIntyre CL, Drenth J, Gonzalez N, Henzell RG, Jordan DR (2008) Molecular characterization of the waxy locus in sorghum. Genome 51:524–533PubMedCrossRefGoogle Scholar
  63. Melake-Berhan A, Butler LG, Ejeta G, Menkir A (1996) Grain mold resistance and polyphenol accumulation in sorghum. J Agric Food Chem 44:2428–2434CrossRefGoogle Scholar
  64. Menz MA, Klein RR, Mullet J, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP(R), RFLP and SSR markers. Plant Mol Biol 48:483–499PubMedCrossRefGoogle Scholar
  65. Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838PubMedCrossRefGoogle Scholar
  66. Miller DA, Pickett RC (1964) Inheritance of partial male-fertility in Sorghum vulgare Pers. Crop Sci 4:1–4CrossRefGoogle Scholar
  67. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84PubMedCrossRefGoogle Scholar
  68. Murty DS (2000) Breeding for grain mold resistance in sorghum: opportunities and limitations. In: Chandrashekar A, Bandyopadhyay R, Hall AJ (eds) Technical and Institutional Options for Sorghum Grain Mold Management. International Crop Research Institute for the Semi-Arid Tropics, ICRISAT, Patancheru, India, pp 225–227Google Scholar
  69. Nagaraja Reddy R, Murali Mohan S, Madhusudhana R, Umakanth AV, Satish K, Srinivas G (2008) Inheritance of morphological characters in sorghum. SAT eJournal 6:1–3Google Scholar
  70. Newman LH (1912) Plant breeding in Scandinavia. Canadian Seed Growers Association, OttawaGoogle Scholar
  71. Ottoman RJ, Hane DC, Brown CR, Yilma S, James SR, Mosley AR, Crosslin JM, Vales MI (2009) Validation and implementation of marker-assisted selection (MAS) for PVY resistance (Rygene) in a tetraploid potato breeding program. Am J Potato Res 86:304–314CrossRefGoogle Scholar
  72. Parh D (2005) DNA-based markers for ergot resistance in sorghum. University of Queensland, BrisbaneGoogle Scholar
  73. Parh DK, Jordan DR, Aitken EAB, Mace ES, Jun-ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382PubMedCrossRefGoogle Scholar
  74. Paterson AH, Lin YR, Li ZK, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995a) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718PubMedCrossRefGoogle Scholar
  75. Paterson AH, Schertz KF, Lin Y-R, Liu S-C, Chang Y-L (1995b) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci USA 92:6127–6131PubMedCrossRefGoogle Scholar
  76. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  77. Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388CrossRefGoogle Scholar
  78. Podlich DW, Cooper M (1998) QU-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics 14:632–653PubMedCrossRefGoogle Scholar
  79. Porter KS, Axtell JD, Lechtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208CrossRefGoogle Scholar
  80. Quinby JR (1966) Fourth maturity gene locus in sorghum. Crop Sci 6:516CrossRefGoogle Scholar
  81. Quinby JR, Karper RE (1945) The inheritance of three genes that influence time of floral initiation and maturity date in Milo. J Am Soc Agron 37:916Google Scholar
  82. Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agron J 46:211–216CrossRefGoogle Scholar
  83. Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616CrossRefGoogle Scholar
  84. Rasmusson JM (1935) Studies in the inheritance of quantitative characters in Pisum: I. preliminary notes on the genetics of flowering. Hereditas 20:161–180CrossRefGoogle Scholar
  85. Reddy BVS, Mughogho LK, Narayana YD, Nicodemus KD, Stenhouse JW (1992) Inheritance pattern of downy mildew resistance in advanced generations of sorghum. Ann Appl Biol 121:249–255CrossRefGoogle Scholar
  86. Reed GM (1930) A new method of producing and detecting sorghum hybrids. J Hered 21:133Google Scholar
  87. Rooney WL (2000) Genetics and cytogenetics. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology and production. Wiley, New York, pp 261–308Google Scholar
  88. Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400CrossRefGoogle Scholar
  89. Rooney WL, Klein RR (2000) Potential of marker-assisted selection for improving grain mold resistance in sorghum. In: Chandrashekar A, Bandyopadhyay R, Hall AJ (eds) Technical and Institutional Options for Sorghum Grain Mold Management. International Crop Research Institute for the Semi-Arid Tropics, ICRISAT, Patancheru, India, pp 183–194Google Scholar
  90. Rooney WL, Smith CW (2000) Techniques for Developing New Cultivars. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology and production. Wiley, New York, pp 329–348Google Scholar
  91. Saballos A, Vermerris W, Rivera L, Ejeta G (2008) Allelic association, chemical characterisation and saccharification properties for brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res 1:193–204CrossRefGoogle Scholar
  92. Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics 181:783–795PubMedCrossRefGoogle Scholar
  93. Salas Fernandez MG, Hamblin MT, Li L, Rooney WL, Tuinstra MR, Kresovich S (2008) Quantitative trait loci analysis of endosperm colour and carotenoid content in sorghum. Crop Sci 48:1732–1743CrossRefGoogle Scholar
  94. Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Nagaraj Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci (QTL) for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Monech]. Theor Appl Genet 119:1425–1439PubMedCrossRefGoogle Scholar
  95. Sax K (1923) The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560PubMedGoogle Scholar
  96. Schertz KF, Stephens JC (1966) Compilation of gene symbols, recommended revisions and summary of linkages for inherited characters of Sorghum vulgare Pers. Tex Agric Exp Stn Tech Monogrph 3:1–42Google Scholar
  97. Schuler GD (1998) Electronic PCR: bridging the gap between genome mapping and genome sequencing. Trends Biotechnol 16:456–459PubMedCrossRefGoogle Scholar
  98. Sidorenko L, Chandler V (2008) RNA-dependent RNA polymerase is required for enhancer-mediated transcriptional silencing associated with paramutation at the maize p1 gene. Genetics 180:1983–1993PubMedCrossRefGoogle Scholar
  99. Sieglinger JB, Swanson AF, Martin JH (1934) Inheritance of awn development in sorghum. J Agric Res 49:663Google Scholar
  100. Srinivas G, Satish K, Madhusudhana R, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454PubMedCrossRefGoogle Scholar
  101. Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilisers bred by backcrossing. Euphytica 30:227–238CrossRefGoogle Scholar
  102. Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741CrossRefGoogle Scholar
  103. Swanson AF, Parker JH (1931) Inheritance of smut resistance and juiciness of stalk in the sorghum cross, red amber × feterita. J Hered 22:51–56Google Scholar
  104. Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520PubMedCrossRefGoogle Scholar
  105. Tao YZ, Jordan DR, Henzell RG, McIntyre CL (1998a) Construction of a genetic map in a sorghum recombinant inbred line using probes from different sources and its comparison with other sorghum maps. Aust J Agric Res 49:729–736CrossRefGoogle Scholar
  106. Tao YZ, Jordan DR, Henzell RG, McIntyre CL (1998b) Identification of genomic regions for rust resistance in sorghum. Euphytica 103:287–292CrossRefGoogle Scholar
  107. Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232CrossRefGoogle Scholar
  108. Tao YZ, Hardy A, Drenth J, Henzell RG, Franzmann BA, Jordan DR, Butler DG, McIntyre CL (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor Appl Genet 107:116–122PubMedGoogle Scholar
  109. Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344CrossRefGoogle Scholar
  110. Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780CrossRefGoogle Scholar
  111. Vinall HN, Cron AB (1921) Improvement of sorghums by hybridisation. J Hered 12:435–443Google Scholar
  112. Wang J, Podlich DW, Cooper M, DeLacy IH (2001) Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theor Appl Genet 103:804–816CrossRefGoogle Scholar
  113. Wang JK, van Ginkel M, Trethowan R, Ye GY, DeLacy I, Podlich D, Cooper M (2004) Simulating the effects of dominance and epistasis on selection response in the CIMMYT wheat breeding program using QuCim. Crop Sci 44:2006–2018CrossRefGoogle Scholar
  114. Webster OJ (1965) Genetic studies in Sorghum vulgare (Pers.). Crop Sci 5:207–210CrossRefGoogle Scholar
  115. William HM, Trethowan R, Crosby-Galvan EM (2007) Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica 157:307–319CrossRefGoogle Scholar
  116. Williams-Alanis H, Rodriguez-Herrera R, Torres-Montalvo H (1995) Effect of plant color on agronomic traits of dryland grain sorghum. Int Sorghum Millets Newsl 36:71–72Google Scholar
  117. Wise MG, Schulze SR, Lin Y-R, Bowers JE, Okuizumi H, Schertz KF, Paterson AH (2002) Progress towards the positional cloning of the sorghum grain shattering gene. Plant and Animal Genome X, San DiegoGoogle Scholar
  118. Woodworth CM (1936) Inheritance of seedling stem colour in a broomcorn–sorghum cross. J Am Soc Agron 28:325–327Google Scholar
  119. Xu WW, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469PubMedCrossRefGoogle Scholar
  120. Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Employment, Economic Development and InnovationHermitage Research StationWarwickAustralia

Personalised recommendations