Theoretical and Applied Genetics

, Volume 121, Issue 6, pp 1033–1046 | Cite as

Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement

  • Germán Robledo
  • Guillermo Seijo
Original Paper


Arachis hypogaea is an allotetraploid species with low genetic variability. Its closest relatives, all of the genus Arachis, are important sources of alleles for peanut breeding. However, a better understanding of the genome constitution of the species and of the relationships among taxa is needed for the effective use of the secondary gene pool of Arachis. In the present work, we focused on all 11 non-A genome (or B genome sensu lato) species of Arachis recognized so far. Detailed karyotypes were developed by heterochromatin detection and mapping of the 5S and the 18S–25S rRNA using FISH. On the basis of outstanding differences observed in the karyotype structures, we propose segregating the non-A genome taxa into three genomes: B sensu stricto (s.s.), F and K. The B genome s.s. is deprived of centromeric heterochromatin and is homologous to one of the A. hypogaea complements. The other two genomes have centromeric bands on most of the chromosomes, but differ in the amount and distribution of heterochromatin. This organization is supported by previously published data on molecular markers, cross compatibility assays and bivalent formation at meiosis in interspecific hybrids. The geographic structure of the karyotype variability observed also reflects that each genome group may constitute lineages that have evolved through independent evolutionary pathways. In the present study, we confirmed that Arachis ipaensis was the most probable B genome donor for A. hypogaea, and we identified a group of other closely related species. The data provided here will facilitate the identification of the most suitable species for the development of prebreeding materials for further improvement of cultivated peanut.


Arachis rDNA Locus Genome Species Secondary Constriction Genome Donor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Consultative Group on International Agricultural Research, Challenge Program, subprogram “Trait capture for crop improvement”, period 2005-2008; and Agencia Nacional de Promoción Científica y Técnica, PICT 2005 Nº34458 and PICT 2007 Nº1356, Argentina. We would like to thank Dirección General de Biodiversidad, Ministerio de Desarrollo Sostenible y Planificación, Bolivia, for authorizing botanical collections; INTA Manfredi Station, Córdoba, Argentina; the Texas Agriculture Experimental Station, Stephenville, Texas, USA; and Embrapa Recursos Genéticos e Biotecnologia (CENARGEN), Brasília-DF, Brazil, for providing seeds of some accessions.


  1. Adams KL (2007) Evolution of duplicate gene expression in polyploid and hybrid plants. J Hered 98:136–141CrossRefPubMedGoogle Scholar
  2. Adams KL, Wendel JF (2005) Allele-specific, bi-directional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics 171:2139–2142CrossRefPubMedGoogle Scholar
  3. Bennett MD (1983) The spatial distribution of chromosomes. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. Allen and Unwin, London, pp 71–79Google Scholar
  4. Burow MD, Simpson CE, Starr JL, Paterson A (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837PubMedGoogle Scholar
  5. Burow MD, Simpson CE, Faries MW, Starr JL, Paterson A (2009) Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome 52:107–119CrossRefPubMedGoogle Scholar
  6. Cabrera AL, Willink A (1973) Biogeografía de América Latina. Organización de Estados Americanos, Serie Biología, Monografía Nº 13, pp 117Google Scholar
  7. Custodio RC (2009) Relações de cruzabilidade entre espécies e acessos de germoplasma do gênero Arachis associados ao genoma B do amendoim (Arachis hypogaea L.). Universidade Federal de Santa Catarina, Florianópolis, Brazil, p 137Google Scholar
  8. Darlington CD (1965) Cytology. J & A Churchill LTD, LondonGoogle Scholar
  9. Fernández A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:187–220Google Scholar
  10. Foster DJ, Stalker HT, Wynne JC, Beute MK (1981) Resistance of Arachis hypogaea L. and wild relatives to Cercospora arachidicola Hori. Oleagineux 36:139–143Google Scholar
  11. Gimenes MA, Lopes CR, Galgaro ML, Valls JFM, Kochert G (2002) RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica 123:421–429CrossRefGoogle Scholar
  12. Gregory WC, Gregory MP (1976) Groundnut. Arachis hypogaea (Leguminosae-Papilionatae). In: Simmonds NW (ed) Evolution of crop plants. Longman Group Ltd, London, pp 151–154Google Scholar
  13. Gregory MP, Gregory WC (1979) Exotic germoplasm of Arachis L. interspecific hybrids. J Hered 70:185–193Google Scholar
  14. Gregory WC, Krapovickas A, Gregory MP (1980) Structures, variation, evolution and classification in Arachis. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. Royal Botanic Gardens, Kew, London, pp 469–481Google Scholar
  15. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041Google Scholar
  16. Halward TM, Stalker HT, Larue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013–1020Google Scholar
  17. He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143–149CrossRefGoogle Scholar
  18. Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327CrossRefGoogle Scholar
  19. Heslop-Harrison JS, Bennett MD (1984) Chromosome order—possible implications for development. J Embryol Exp Morphol 83(Supplement):51–73Google Scholar
  20. Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): evidence from RAPDs. Plant Syst Evol 198:167–178CrossRefGoogle Scholar
  21. Husted L (1936) Cytological Studies on the Peanut, Arachis. II. Chromosome number, morphology and behavior, and their application to the problem of the cultivated forms. Cytologia 7:396–423Google Scholar
  22. Isleib TG, Holbrook CC, Gorbet DW (2001) Use of Arachis sp. plant introductions in peanut cultivar development. Peanut Sci 28:96–113CrossRefGoogle Scholar
  23. Johnson DR, Wynne JC, Campbell WV (1977) Resistance of wild species of Arachis to the two spotted spider mite, Tetranychus urticae. Peanut Sci 4:9–11CrossRefGoogle Scholar
  24. Jones RN, Hegarty M (2010) Order out of chaos in the hybrid plant nucleus. Cytogenet Genome Res 126:376–389CrossRefGoogle Scholar
  25. Josefsson C, Dilkes B, Comai L (2006) Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 16:1322–1328CrossRefPubMedGoogle Scholar
  26. Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570CrossRefGoogle Scholar
  27. Kochert G, Stalker HT, Gimenes M, Galgaro L, Moore K (1996) RFLP and cytogenetic evidence for the progenitor species of allotetraploid cultivated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291CrossRefGoogle Scholar
  28. Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186Google Scholar
  29. Krapovickas A, Lavia GI (2000) Advances in the taxonomy of the genus Arachis. In: Proceedings of the American Peanut Research and Education Society, vol 32. APRES, Alabama, USA, p 46Google Scholar
  30. Lai Z, Gross BL, Zou Y, Andrews J, Rieseberg LH (2006) Microarray analysis reveals differential gene expression in hybrid sunflower species. Mol Ecol 15:1213–1227CrossRefPubMedGoogle Scholar
  31. Lavia GI (1996) Estudios cromosómicos en Arachis (Leguminosae). Bonplandia 9:111–120Google Scholar
  32. Lavia GI (1998) Karyotypes of Arachis palustris and A. praecox (section Arachis), two species with basic chromosome number x = 9. Cytologia 63:177–181Google Scholar
  33. Lavia GI (2000) Chromosome studies of wild Arachis (Leguminosae). Caryologia 53:177–181Google Scholar
  34. Leitch AR, Schwarzacher T, Mosgfiller W, Bennett MD, Heslop-Harrison JS (1991) Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma 101:206–213CrossRefGoogle Scholar
  35. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  36. Mallikarjuna N (2002) Gene introgression from Arachis glabrata into A. hypogaea, A. duranensis and A. diogoi. Euphytica 124:99–105CrossRefGoogle Scholar
  37. Mallikarjuna N, Pande S, Jadhav DR, Sastri DC, Rao JN (2004) Introgression of disease resistance genes from Arachis kempff-mercadoi into cultivated groundnut. Plant Breed 123:573–576CrossRefGoogle Scholar
  38. Michalak P (2009) Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity 102:45–50CrossRefPubMedGoogle Scholar
  39. Milla SR, Isleib TG, Stalker HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–11CrossRefPubMedGoogle Scholar
  40. Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11CrossRefGoogle Scholar
  41. Morrone JJ (2001) Biogeografía de América Latina y el Caribe. Manuales & Tesis Sociedad Entomológica Aragonesa, vol 3. Zaragoza, Spain, p 150Google Scholar
  42. Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236CrossRefGoogle Scholar
  43. Navarro G, Maldonado M (2002) Geografía ecológica de Bolivia, vegetación y ambientes acuáticos. Centro de ecología Simón Patiño, Cochabamba, Bolivia, p 719Google Scholar
  44. Neves N, Castillo A, Silva M, Heslop-Harrison JS, Viegas W (1997) Genomic interactions: gene expression, DNA methylation and nuclear structure. In: Enriques-Gil N, Parker JS, Puertas MJ (eds) Chromosome Today, vol 12, pp 182–201Google Scholar
  45. Paik-Ro OG, Smith RL, Knauft DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208CrossRefGoogle Scholar
  46. Peñaloza A, Valls JFM (2005) Chromosome number and satellited chromosome morphology of eleven species of Arachis (Leguminosae). Bonplandia 14:65–72Google Scholar
  47. Prado DE (1993) What is the Gran Chaco vegetation in South America? I. A review. Contribution to the study of the flora and vegetation of the Chaco. V. Candollea 48:145–172Google Scholar
  48. Raina SN, Mukai Y (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59CrossRefGoogle Scholar
  49. Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772CrossRefPubMedGoogle Scholar
  50. Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91CrossRefPubMedGoogle Scholar
  51. Robledo G, Seijo JG (2008) Characterization of Arachis D genome by FISH chromosome markers and total genome DNA hybridization. Genet Mol Biol 31:717–724CrossRefGoogle Scholar
  52. Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307CrossRefPubMedGoogle Scholar
  53. Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530CrossRefGoogle Scholar
  54. Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297CrossRefGoogle Scholar
  55. Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromosomes Today 9:61–74Google Scholar
  56. Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of 5S and 18S-25S rRNA genes evidences that Arachis duranensis and A. ipaënsis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303CrossRefGoogle Scholar
  57. Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea–Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971CrossRefGoogle Scholar
  58. Simpson CE (2001) Use of wild Arachis species/introgression of genes into A. hypogaea L. Peanut Sci 28:114–116CrossRefGoogle Scholar
  59. Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. Crop Sci 41:918CrossRefGoogle Scholar
  60. Singh AK (1986) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 8. Synthetic amphidiploids and their importance in interspecific breeding. Theor Appl Genet 72:433–439CrossRefGoogle Scholar
  61. Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Part 2. Chromosome complements of species of section Arachis. Theor Appl Genet 61:305–314Google Scholar
  62. Singh AK, Moss JP (1984) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Part 5. Genome analysis in section Arachis and its implications in gene transfer. Theor Appl Genet 68:355–364CrossRefGoogle Scholar
  63. Singh AK, Smartt J (1998) The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited. Genet Resour Crop Evol 45:113–118CrossRefGoogle Scholar
  64. Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675CrossRefGoogle Scholar
  65. Spichiger R, Calenge C, Bise B (2004) Geographical zonation in the Neotropics of tree species characteristic of the Paraguay–Paraná Basin. J Biogeogr 31:1489–1501CrossRefGoogle Scholar
  66. Stalker HT (1991) A new species section Arachis of peanuts with D genome. Am J Bot 78:630–637CrossRefGoogle Scholar
  67. Stalker HT, Dalmacio RD (1981) Chromosomes of Arachis species, section Arachis (Leguminosae). J Hered 72:403–408Google Scholar
  68. Stalker HT, Wynne JC (1979) Cytology of interspecific hybrids in section Arachis of peanuts. Peanut Sci 6:110–114CrossRefGoogle Scholar
  69. Stalker HT, Dhesi JS, Parry DC, Hahn JH (1991) Cytological and interfertility relationship of Arachis section Arachis. Am J Bot 78:238–246CrossRefGoogle Scholar
  70. Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-wesley, Reading, MAGoogle Scholar
  71. Subramanian V, Gurtu S, Nageswara Rao RC, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660CrossRefPubMedGoogle Scholar
  72. Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237CrossRefPubMedGoogle Scholar
  73. Valls JFM, Simpson CE (2005) New species of Arachis from Brazil, Paraguay, and Bolivia. Bonplandia 14:35–64Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratorio de Citogenética y EvoluciónInstituto de Botánica del NordesteCorrientesArgentina

Personalised recommendations