Theoretical and Applied Genetics

, Volume 121, Issue 3, pp 577–588

Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding

  • Jafar A. Mammadov
  • Wei Chen
  • Ruihua Ren
  • Reetal Pai
  • Wesley Marchione
  • Feyruz Yalçin
  • Hanneke Witsenboer
  • Thomas W. Greene
  • Steven A. Thompson
  • Siva P. Kumpatla
Original Paper

Abstract

The duplicated and the highly repetitive nature of the maize genome has historically impeded the development of true single nucleotide polymorphism (SNP) markers in this crop. Recent advances in genome complexity reduction methods coupled with sequencing-by-synthesis technologies permit the implementation of efficient genome-wide SNP discovery in maize. In this study, we have applied Complexity Reduction of Polymorphic Sequences technology (Keygene N.V., Wageningen, The Netherlands) for the identification of informative SNPs between two genetically distinct maize inbred lines of North and South American origins. This approach resulted in the discovery of 1,123 putative SNPs representing low and single copy loci. In silico and experimental (Illumina GoldenGate (GG) assay) validation of putative SNPs resulted in mapping of 604 markers, out of which 188 SNPs represented 43 haplotype blocks distributed across all ten chromosomes. We have determined and clearly stated a specific combination of stringent criteria (>0.3 minor allele frequency, >0.8 GenTrainScore and >0.5 Chi_test100 score) necessary for the identification of highly polymorphic and genetically stable SNP markers. Due to these criteria, we identified a subset of 120 high-quality SNP markers to leverage in GG assay-based marker-assisted selection projects. A total of 32 high-quality SNPs represented 21 haplotypes out of 43 identified in this study. The information on the selection criteria of highly polymorphic SNPs in a complex genome such as maize and the public availability of these SNP assays will be of great value for the maize molecular genetics and breeding community.

Supplementary material

122_2010_1331_MOESM1_ESM.xls (17 kb)
Supplementary material 1 (XLS 17 kb)
122_2010_1331_MOESM2_ESM.xls (58 kb)
Supplementary material 2 (XLS 58 kb)

References

  1. Aminafshar M, Amirina C, Vaez Torshizi R (2008) Genetic diversity in buffalo population of Guilan using microsatellite markers. J Anim Vet Adv 7:1499–1502Google Scholar
  2. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376CrossRefPubMedGoogle Scholar
  3. Barbazuk WB, Emrich SJ, Chen HD, Schnable P (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918CrossRefPubMedGoogle Scholar
  4. Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91CrossRefPubMedGoogle Scholar
  5. Chagné D, Batley J, Edwards D, Forster JW (2007) Single nucleotide polymorphisms genotyping in plants. In: Oraguzie NC, Rikkerink EHA, Susan E, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, pp 77–94CrossRefGoogle Scholar
  6. Ching A, Caldwell KD, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19CrossRefPubMedGoogle Scholar
  7. Chen X, Levine L, Kwok P-Y (1999) Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 9:492–498PubMedGoogle Scholar
  8. Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine scale mapping. Genomics 29:311–322CrossRefPubMedGoogle Scholar
  9. Edwards KJ, Poole RL, Barker GLA (2008) SNP discovery in plants. In: Henry RJ (ed) Plant genotyping II: SNP technology. CABI, Wallingford, Oxfordshire, pp 1–29CrossRefGoogle Scholar
  10. Emberton J, Ma J, Yuan Y, SanMiguel P, Bennetzen JL (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res 15:1441–1446CrossRefPubMedGoogle Scholar
  11. Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78CrossRefPubMedGoogle Scholar
  12. Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578PubMedGoogle Scholar
  13. Fu Y, Emrich SJ, Guo L, Wen TJ, Ashlock DA, Aluru S, Schnable PS (2005) Quality assessment of maize assembled genomic islands (MAGIs) and large-scale experimental verification of predicted genes. Proc Natl Acad Sci USA 102:12282–12287CrossRefPubMedGoogle Scholar
  14. Ganal M, Altmann T, Rőder MS (2009) SNP identification in crop plants. Curr Opin Biotechnol 12:211–217Google Scholar
  15. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 96:6809–6814CrossRefGoogle Scholar
  16. Gore MA, Wright MH, Ersoz ES, Bouffard P, Szekeres ES, Jarvie TP, Hurwitz BL, Narechania A, Harkins TT, Grills GS, Ware DH, Buckler ES (2009a) Large-scale discovery of gene-enriched SNPs. The Plant Genome 2:121–133CrossRefGoogle Scholar
  17. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009b) A first-generation haplotype map of maize. Science 326:1115CrossRefPubMedGoogle Scholar
  18. Hedrick PW (2000) Genetics of populations. Jones and Barlett, Sudbury, MAGoogle Scholar
  19. Hyten DL, Song Q, Choi I-Y, Yoon M-S, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952CrossRefPubMedGoogle Scholar
  20. Illumina SNP genotyping (2006) Infinium Assay II Workflow. URL:http://www.illumina.com/Documents/products/workflows/workflow_infinium_ii.pdf
  21. Jones E, Chu WC, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalksi A, Smith OS, McMullen MD, Bezawada C, Warren L, Babayev J, Basu S, Smith S (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mais L.) germplasm. Mol Breeding 24:165–176CrossRefGoogle Scholar
  22. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotide with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res 4:357–362CrossRefGoogle Scholar
  23. Mardis ER (2007) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141Google Scholar
  24. Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676CrossRefPubMedGoogle Scholar
  25. Morozova O, Marra MA (2008) Application of next-generation sequencing technologies in functional genomics. Genomics 92:255–264CrossRefPubMedGoogle Scholar
  26. Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4:907–909CrossRefPubMedGoogle Scholar
  27. Olivier M (2005) The Invader® assay for SNP genotyping. Mutat Res 573:103–110PubMedGoogle Scholar
  28. Ott J (2001) Program HET Version 1.8, utility programs for genetic analysis of linkage. Rockfeller University, NYGoogle Scholar
  29. Palmer LE, Rabinowicz PD, O’Shaughnessy A, Balija V, Nascimento L, Dike S, de la Bastide M, Martienssen RA, McCombie WR (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2117CrossRefPubMedGoogle Scholar
  30. Phillips MS, Lawrence R, Sachidanandam R, Morris AP, Balding DJ, Donaldson MA, Studebaker JF, Ankener WM, Alfisi SV, Kuo F-S, Camisa AL, Pazorov V, Scott KE, Carey BJ, Faith J, Katari G, Bhatti HA, Cyr JM, Derohannessian V, Elosua C, Forman AM, Grecco NM, Hock CR, Kuebler JM, Lathrop JA, Mockler MA, Nachtman EP, Restine SL, Varde SA, Hozza MJ, Gelfand CA, Broxholme J, Abecasis GR, Boyce-Jacino MT, Cardon LR (2003) Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 33:382–387CrossRefPubMedGoogle Scholar
  31. Rafalski A (2002) Novel genetic mapping tools in plant: SNPs and LD-based approaches. Plant Sci 162:329–333CrossRefGoogle Scholar
  32. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484CrossRefPubMedGoogle Scholar
  33. Rostoks N, Ramsay L, Mackenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661CrossRefPubMedGoogle Scholar
  34. Schőn CC, Utz HF, Grob S, Truberg B, Openshaw S, Melchinger AE (2003) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498CrossRefGoogle Scholar
  35. Stuart CN, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR application. Biotechniques 14:748–750Google Scholar
  36. Tian F, Stevensa NM, Buckler ES (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci USA 106(Suppl 1):9979–9986CrossRefPubMedGoogle Scholar
  37. van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  38. van Orsouw N, Hogers RC, Janssen A, Yalcin F, Snoeijers S, Verstege E, Scheiders H, van der Poel H, van Oeveren J, Verstegen H, van Eijk MJT (2007) Complexity reduction of polymorphic sequences (CRoPS™): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 11:1–10Google Scholar
  39. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  40. Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-C0t sequence analysis of the maize genome. Plant J 34:249–255CrossRefPubMedGoogle Scholar
  41. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection of the maize genome. Science 308:1310–1314CrossRefPubMedGoogle Scholar
  42. Wright WT, Heggarty SV, Young IS, Nicholls DP, Whittall R, Humphries SE, Graham CA (2008) Multiplex MassARRAY spectrometry (iPLEX) produces a fast and economical test for 56 familial hypercholesterolaemia-causing mutations. Clin Genet 74:463–468CrossRefPubMedGoogle Scholar
  43. Zhu YL, Song QL, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jafar A. Mammadov
    • 1
  • Wei Chen
    • 1
  • Ruihua Ren
    • 1
  • Reetal Pai
    • 1
  • Wesley Marchione
    • 1
  • Feyruz Yalçin
    • 2
  • Hanneke Witsenboer
    • 2
  • Thomas W. Greene
    • 1
  • Steven A. Thompson
    • 1
  • Siva P. Kumpatla
    • 1
  1. 1.Dow AgroSciencesIndianapolisUSA
  2. 2.KEYGENE N.V.WageningenThe Netherlands

Personalised recommendations