Advertisement

Theoretical and Applied Genetics

, Volume 121, Issue 3, pp 511–533 | Cite as

A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes

  • R. Harel-Beja
  • G. Tzuri
  • V. Portnoy
  • M. Lotan-Pompan
  • S. Lev
  • S. Cohen
  • N. Dai
  • L. Yeselson
  • A. Meir
  • S. E. Libhaber
  • E. Avisar
  • T. Melame
  • P. van Koert
  • H. Verbakel
  • R. Hofstede
  • H. Volpin
  • M. Oliver
  • A. Fougedoire
  • C. Stalh
  • J. Fauve
  • B. Copes
  • Z. Fei
  • J. Giovannoni
  • N. Ori
  • E. Lewinsohn
  • A. Sherman
  • J. Burger
  • Y. Tadmor
  • A. A. Schaffer
  • N. KatzirEmail author
Original Paper

Abstract

A genetic map of melon enriched for fruit traits was constructed, using a recombinant inbred (RI) population developed from a cross between representatives of the two subspecies of Cucumis melo L.: PI 414723 (subspecies agrestis) and ‘Dulce’ (subspecies melo). Phenotyping of 99 RI lines was conducted over three seasons in two locations in Israel and the US. The map includes 668 DNA markers (386 SSRs, 76 SNPs, six INDELs and 200 AFLPs), of which 160 were newly developed from fruit ESTs. These ESTs include candidate genes encoding for enzymes of sugar and carotenoid metabolic pathways that were cloned from melon cDNA or identified through mining of the International Cucurbit Genomics Initiative database (http://www.icugi.org/). The map covers 1,222 cM with an average of 2.672 cM between markers. In addition, a skeleton physical map was initiated and 29 melon BACs harboring fruit ESTs were localized to the 12 linkage groups of the map. Altogether, 44 fruit QTLs were identified: 25 confirming QTLs described using other populations and 19 newly described QTLs. The map includes QTLs for fruit sugar content, particularly sucrose, the major sugar affecting sweetness in melon fruit. Six QTLs interacting in an additive manner account for nearly all the difference in sugar content between the two genotypes. Three QTLs for fruit flesh color and carotenoid content were identified. Interestingly, no clear colocalization of QTLs for either sugar or carotenoid content was observed with over 40 genes encoding for enzymes involved in their metabolism. The RI population described here provides a useful resource for further genomics and metabolomics studies in melon, as well as useful markers for breeding for fruit quality.

Keywords

Carotenoid Linkage Group Melon Recombinant Inbred Line Total Soluble Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are deeply grateful to the staff of the Cancer Research Center and Paediatric Haematology–Oncology at Sheba Medical Center for the Sequenom analysis. We are most thankful to Dr. Ilan Paran for fruitful discussions throughout the project, to Dr. Harry Paris for critically reviewing the manuscript and to Uzi Sa’ar and Fabian Baumkoler for assistance with the field management. We thank the Galilee Technology Center, Migal for the DHPLC analysis.This research was supported by Research Grant Award No. IS-3877-06 from BARD, the United States—Israel Binational Agricultural Research and Development Fund, and in part by Israel Science Foundation Grant No. 386-06. The research was also supported by De Ruiter Seeds, Enza Zaden, Rijk Zwaan, Sakata Seed Corporation, Semilas Fito, Syngenta Seeds and Vilmorin Clause and Cie. Contribution No. 109/2010 of the Agricultural Research Organization, Bet Dagan Israel.

Supplementary material

122_2010_1327_MOESM1_ESM.xls (249 kb)
Supplementary material 1 (XLS 249 kb)

References

  1. Baudracco-Arnas S, Pitrat M (1996) A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93:57–64CrossRefGoogle Scholar
  2. Bermudez L, Urias U, Milstein D, Kamenetzky L, Asis R, Fernie AR, Van Sluys MA, Carrari F, Rossi M (2008) A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit. J Exp Bot 59:2875–2890CrossRefPubMedGoogle Scholar
  3. Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari MA, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838CrossRefPubMedGoogle Scholar
  4. Burger Y, Schaffer AA (2007) The contribution of sucrose metabolism enzymes to sucrose accumulation in Cucumis melo. J Am Soc Hortic Sci 132:704–712Google Scholar
  5. Burger Y, Shen S, Petreikov M, Schaffer AA (2000) The contribution of sucrose to total sugar content in melon. In: Katzir N, Paris HS (eds) Cucurbitaceae 2000, 7th EUCARPIA meeting on cucurbit genetics and breeding. Acta Hortic, pp 479–485Google Scholar
  6. Burger Y, Saar U, Katzir N, Paris HS, Yeselson Y, Levin I, Schaffer AA (2002) A single recessive gene for sucrose accumulation in Cucumis melo fruit. J Am Soc Hortic Sci 127:938–943Google Scholar
  7. Burger Y, Sa’ar U, Paris HS, Lewinsohn E, Katzir N, Tadmor Y, Schaffer AA (2006) Genetic variability for valuable fruit quality traits in Cucumis melo. ISR J Plant Sci 54:233–242CrossRefGoogle Scholar
  8. Burger Y, Paris H, Cohen R, Katzir N, Tadmor Y, Lewinsohn E, Schaffer AA (2009) Genetic diversity of Cucumis melo. Hortic Rev 36:165–198CrossRefGoogle Scholar
  9. Burr B, Burr FA (1991) Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet 7:55–60PubMedGoogle Scholar
  10. Carmi N, Zhang GF, Petreikov M, Gao ZF, Eyal Y, Granot D, Schaffer AA (2003) Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant J 33:97–106CrossRefPubMedGoogle Scholar
  11. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685CrossRefPubMedGoogle Scholar
  12. Chetelat RT, Deverna JW, Bennett AB (1995) Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (Sucr) controlling fruit sugar composition. Theor Appl Genet 91:327–333Google Scholar
  13. Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD (2008) Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet 117:1345–1359CrossRefPubMedGoogle Scholar
  14. Cuevas HE, Staub JE, Simon PW, Zalapa JE (2009) A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theor Appl Genet 119:741–756CrossRefPubMedGoogle Scholar
  15. Dai N, Petreikov M, Portnoy V, Katzir N, Pharr DM, Schaffer AA (2006) Cloning and expression analysis of a UDP-galactose/glucose pyrophosphorylase from melon fruit provides evidence for the major metabolic pathway of galactose metabolism in raffinose oligosaccharide metabolizing plants. Plant Physiol 142:294–304CrossRefPubMedGoogle Scholar
  16. Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arus P, deVicente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974CrossRefPubMedGoogle Scholar
  17. Danin-Poleg Y, Reis N, Tzuri G, Katzir N (2001) Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 102:61–72CrossRefGoogle Scholar
  18. Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384CrossRefGoogle Scholar
  19. Deleu W, Gonzalez V, Monfort A, Bendahmane A, Puigdomenech P, Arus P, Garcia-Mas J (2007) Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genom 278:611–622CrossRefGoogle Scholar
  20. Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arus P, Nuez F, Monforte AJ, Pico MB, Garcia-Mas J (2009) A set of EST–SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90CrossRefPubMedGoogle Scholar
  21. Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, Alarcon AL, Alvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89Google Scholar
  22. Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150CrossRefPubMedGoogle Scholar
  23. Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789CrossRefPubMedGoogle Scholar
  24. Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209CrossRefGoogle Scholar
  25. Gao ZF, Schaffer AA (1999) A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiol 119:979–987CrossRefPubMedGoogle Scholar
  26. Gao ZF, Petreikov M, Zamski E, Schaffer AA (1999) Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo). Physiol Plant 106:1–8CrossRefGoogle Scholar
  27. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte A (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811CrossRefPubMedGoogle Scholar
  28. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Fang L, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Li S, Zhang X, Wang J, Sun R, Zhang B, Jiang S, Du Y (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281CrossRefPubMedGoogle Scholar
  29. Hubbard NL, Huber SC, Pharr DM (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534CrossRefPubMedGoogle Scholar
  30. Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283–297CrossRefPubMedGoogle Scholar
  31. Katzir N, Danin-Poleg Y, Tzuri G, Karchi Z, Lavi U, Cregan PB (1996) Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor Appl Genet 93:1282–1290CrossRefGoogle Scholar
  32. Keurentjes JJB, Sulpice R, Gibon Y, Steinhauser MC, Fu JY, Koornneef M, Stitt M, Vreugdenhil D (2008) Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana. Genome Biol 9:R129CrossRefPubMedGoogle Scholar
  33. Lester GE, Arias LS, Gomez-Lim M (2001) Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptide profiles during growth and maturation. J Am Soc Hortic Sci 126:33–36Google Scholar
  34. Lingle SE, Dunlap JR (1987) Sucrose metabolism in netted muskmelon fruit during development. Plant Physiol 84:386–389CrossRefPubMedGoogle Scholar
  35. Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552CrossRefPubMedGoogle Scholar
  36. Liu YS, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D (2003) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J 1:195–207CrossRefPubMedGoogle Scholar
  37. Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162CrossRefPubMedGoogle Scholar
  38. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li HH, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740CrossRefPubMedGoogle Scholar
  39. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758CrossRefPubMedGoogle Scholar
  40. Morales M, Roig E, Monforte AJ, Arus P, Garcia-Mas J (2004) Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 47:352–360CrossRefPubMedGoogle Scholar
  41. Morales M, Orjeda G, Nieto C, van Leeuwen H, Monfort A, Charpentier M, Caboche M, Arus P, Puigdomenech P, Aranda MA, Dogimont C, Bendahmane A, Garcia-Mas J (2005) A physical map covering the nsv locus that confers resistance to Melon necrotic spot virus in melon (Cucumis melo L). Theor Appl Genet 111:914–922CrossRefPubMedGoogle Scholar
  42. Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116:589–602CrossRefPubMedGoogle Scholar
  43. Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615CrossRefPubMedGoogle Scholar
  44. Obando-Ulloa JM, Eduardo I, Monforte AJ, Fernandez-Trujillo JP (2009) Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Sci Hortic 121:425–433CrossRefGoogle Scholar
  45. Paran I, Goldman I, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548CrossRefGoogle Scholar
  46. Paris MK, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Mol Breed 22:405–419CrossRefGoogle Scholar
  47. Park Y, Katzir N, Brotman Y, King J, Bertrand F, Havey M (2004) Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). Theor Appl Genet 109:707–712CrossRefPubMedGoogle Scholar
  48. Park SO, Hwang HY, Crosby KM (2009) A genetic linkage map including loci for male sterility, sugars, and ascorbic acid in melon. J Am Soc Hortic Sci 134:67–76Google Scholar
  49. Perin C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latche A, Pitrat M, Lelievre JM (2002a) Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol 129:300–309CrossRefPubMedGoogle Scholar
  50. Perin C, Hagen LS, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002b) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034CrossRefPubMedGoogle Scholar
  51. Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002c) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genom 266:933–941CrossRefGoogle Scholar
  52. Petreikov M, Shen S, Yeselson Y, Levin I, Bar M, Schaffer AA (2006) Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit. Planta 224:1465–1479CrossRefPubMedGoogle Scholar
  53. Petreikov M, Yeselson L, Shen S, Levin I, Schaffer AA, Efrati A, Bar M (2009) Carbohydrate balance and accumulation during development of near-isogenic tomato lines differing in the AGPase-L1 allele. J Am Soc Hortic Sci 134:134–140Google Scholar
  54. Pitrat M, Hanelt P, Hammer K (2000) Some comments on infraspecific classification of cultivars of melon. In: Katzir N, Paris HS (eds) Cucurbitaceae 2000, 7th EUCARPIA meeting on cucurbit genetics and breeding. Acta Hortic, pp 29–36Google Scholar
  55. Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, Schaffer AA, Burger J, Tadmor Y, Lewinsohn E, Katzir N (2008) The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol Biol 66:647–661CrossRefPubMedGoogle Scholar
  56. Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351CrossRefPubMedGoogle Scholar
  57. Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107CrossRefPubMedGoogle Scholar
  58. Rosa JT (1928) Change in composition during ripening and storage of melons. Hilgardia 3:421–443Google Scholar
  59. Schaffer AA, Madore M, Pharr DM (1996) Cucurbits. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, New York, pp 729–757Google Scholar
  60. Sinclair JW, Park SO, Lester GE, Yoo KS, Crosby KM (2006) Identification and confirmation of RAPD markers and andromonoecious associated with quantitative trait loci for sugars in melon. J Am Soc Hortic Sci 131:360–371Google Scholar
  61. Stepansky A, Kovalski I, Schaffer AA, Perl-Treves R (1999) Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genet Resour Crop Evol 46:53–62CrossRefGoogle Scholar
  62. Tadmor Y, King S, Levi A, Davis A, Meir A, Wasserman B, Hirschberg J, Lewinsohn E (2005) Comparative fruit colouration in watermelon and tomato. Food Res Int 38:837–841CrossRefGoogle Scholar
  63. Van Leeuwen H, Monfort A, Zhang HB, Puigdomenech P (2003) Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51:703–718CrossRefPubMedGoogle Scholar
  64. Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V, WageningenGoogle Scholar
  65. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  66. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  67. Vuylsteke M, Peleman JD, van Eijk MJ (2007) AFLP technology for DNA fingerprinting. Nat Protoc 2:1387–1398CrossRefPubMedGoogle Scholar
  68. Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95:791–798CrossRefGoogle Scholar
  69. Wang YH, Choi WB, Thomas CE, Dean RA (2002) Cloning of disease-resistance homologues in end sequences of BAC clones linked to Fom-2, a gene conferring resistance to Fusarium wilt in melon (Cucumis melo L.). Genome 45:473–480CrossRefPubMedGoogle Scholar
  70. Yamaguchi M, Hughes DL, Yabumoto K, Jennings WG (1977) Quality of cantaloupe muskmelons—variability and attributes. Sci Hortic 6:59–70CrossRefGoogle Scholar
  71. Yan WK, Rajcan I (2003) Prediction of cultivar performance based on single- versus multiple-year tests in soybean. Crop Sci 43:549–555CrossRefGoogle Scholar
  72. Yu X, Wang X, Zhang W, Qian T, Tang G, Guo Y, Zheng C (2008) Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development. J Exp Bot 59:2969–2977Google Scholar
  73. Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201CrossRefPubMedGoogle Scholar
  74. Zilberman DE, Safran M, Paz N, Amariglio N, Simon A, Fridman E, Kleinmann N, Ramon J, Rechavi G (2009) Does RNA editing play a role in the development of urinary bladder cancer? Urol Oncol. doi: 10.1016/j.urolonc.2008.11.006
  75. Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • R. Harel-Beja
    • 1
  • G. Tzuri
    • 1
  • V. Portnoy
    • 1
  • M. Lotan-Pompan
    • 1
  • S. Lev
    • 1
  • S. Cohen
    • 2
  • N. Dai
    • 2
  • L. Yeselson
    • 2
  • A. Meir
    • 1
  • S. E. Libhaber
    • 1
  • E. Avisar
    • 2
  • T. Melame
    • 2
  • P. van Koert
    • 3
  • H. Verbakel
    • 3
  • R. Hofstede
    • 3
  • H. Volpin
    • 3
  • M. Oliver
    • 4
  • A. Fougedoire
    • 5
  • C. Stalh
    • 5
  • J. Fauve
    • 6
  • B. Copes
    • 5
  • Z. Fei
    • 8
  • J. Giovannoni
    • 8
  • N. Ori
    • 7
  • E. Lewinsohn
    • 1
  • A. Sherman
    • 2
  • J. Burger
    • 1
  • Y. Tadmor
    • 1
  • A. A. Schaffer
    • 2
  • N. Katzir
    • 1
    Email author
  1. 1.Department of Vegetable ResearchAgricultural Research Organization, Newe Ya’ar Research CenterRamat YishayIsrael
  2. 2.Department of Vegetable ResearchAgricultural Research Organization, Volcani Research CenterBet DaganIsrael
  3. 3.Keygene N.V.Business ParkWageningenThe Netherlands
  4. 4.Syngenta Seeds S.A.S.Saint SauveurFrance
  5. 5.HM ClauseDavisCAUSA
  6. 6.ClauseSt Rémy de ProvenceFrance
  7. 7.The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
  8. 8.United States Department of Agriculture, Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaUSA

Personalised recommendations