Advertisement

Theoretical and Applied Genetics

, Volume 121, Issue 1, pp 21–35 | Cite as

CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals

  • Andrea K. Knox
  • Taniya Dhillon
  • Hongmei Cheng
  • Alessandro Tondelli
  • Nicola Pecchioni
  • Eric J. StockingerEmail author
Original Paper

Abstract

Frost Resistance-1 (FR-1) and FR-2 are two loci affecting freezing tolerance and winter hardiness of the temperate-climate cereals. FR-1 is hypothesized to be due to the pleiotropic effects of VRN-1. FR-2 spans a cluster of C-Repeat Binding Factor (CBF) genes. These loci are genetically and functionally linked. Recent studies indicate CBF transcripts are downregulated by the VRN-1 encoded MADS-box protein or a factor in the VRN-1 pathway. Here, we report that barley genotypes ‘Dicktoo’ and ‘Nure’ carrying a vrn-H1 winter allele at VRN-H1 harbor increased copy numbers of CBF coding sequences relative to Vrn-H1 spring allele genotypes ‘Morex’ and ‘Tremois’. Sequencing bacteriophage lambda genomic clones from these four genotypes alongside DNA blot hybridizations indicate approximately half of the eleven CBF orthologs at FR-H2 are duplicated in individual genomes. One of these duplications discriminates vrn-H1 genotypes from Vrn-H1 genotypes. The vrn-H1 winter allele genotypes harbor tandem segmental duplications through the CBF2ACBF4B genomic region and maintain two distinct CBF2 paralogs, while the Vrn-H1 spring allele genotypes harbor single copies of CBF2 and CBF4. An additional CBF gene, CBF13, is a pseudogene interrupted by multiple non-sense codons in ‘Tremois’ whereas CBF13 is a complete uninterrupted coding sequence in ‘Dicktoo’ and ‘Nure’. DNA blot hybridization with wheat DNAs reveals greater copy numbers of CBF14 also occurs in winter wheats than in spring wheats. These data indicate that variation in CBF gene copy numbers is widespread in the Triticeae and suggest selection for winter hardiness co-selects winter alleles at both VRN-1 and FR-2.

Keywords

Freezing Tolerance CBF4 Gene Winter Hardiness Copy Number Difference Winter Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Erik R. Rowley for technical assistance. We thank David M. Francis, Esther van der Knaap, Ning Jiang (Michigan State University), and an anonymous reviewer for critical reading and suggestions on how to improve the manuscript. This work was supported by the National Science Foundation Plant Genome Program (DBI 0110124). Salaries and research support provided by state and federal funds appropriated to The Ohio State University, Ohio Agricultural Research and Development Center. Support for A.T. came from the Italian National Research Project MIPAAF Sistema Integrato per lo sviluppo della Cerealicoltura Meridionale.

Supplementary material

122_2010_1288_MOESM1_ESM.doc (480 kb)
Supplementary material 1 (DOC 479 kb)

References

  1. Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martinez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139:1304–1312CrossRefPubMedGoogle Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidmen JG, Smith JA, Struhl K (1993) Current protocols in molecular biology. Greene Publishing Associates/Wiley, NYGoogle Scholar
  3. Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genomics 277:533–554CrossRefPubMedGoogle Scholar
  4. Båga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7:53–68CrossRefPubMedGoogle Scholar
  5. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94CrossRefPubMedGoogle Scholar
  6. Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T, Stebbings LA, Leroy C, Edkins S, Hardy C, Teague JW, Menzies A, Goodhead I, Turner DJ, Clee CM, Quail MA, Cox A, Brown C, Durbin R, Hurles ME, Edwards PA, Bignell GR, Stratton MR, Futreal PA (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722–729CrossRefPubMedGoogle Scholar
  7. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054CrossRefPubMedGoogle Scholar
  8. Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787CrossRefPubMedGoogle Scholar
  9. Clark JA (1931) Registration of improved wheat varieties, VI. J Am Soc Agron 23:1010–1012Google Scholar
  10. Cockram J, Mackay IJ, O’Sullivan DM (2007) The role of double-stranded break repair in the creation of phenotypic diversity at cereal VRN1 loci. Genetics 177:2535–2539CrossRefPubMedGoogle Scholar
  11. Cook EH Jr, Scherer SW (2008) Copy-number variations associated with neuropsychiatric conditions. Nature 455:919–923CrossRefPubMedGoogle Scholar
  12. Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860CrossRefPubMedGoogle Scholar
  13. Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184CrossRefPubMedGoogle Scholar
  14. Feinberg AP, Vogelstein B (1983) A technique for radiolabelling restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13CrossRefPubMedGoogle Scholar
  15. Fischbeck G (2003) Diversification through breeding. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare), 1st edn. Elsevier, New York, pp 29–52Google Scholar
  16. Fowler DB, Gusta LV (1979) Selection for winterhardiness in wheat. 1. Identification of genotypic variability. Crop Sci 19:769–772Google Scholar
  17. Fowler DB, Limin AE (2004) Interactions among factors regulating phenological development and acclimation rate determine low-temperature tolerance in wheat. Ann Bot (Lond) 94:717–724CrossRefGoogle Scholar
  18. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690CrossRefPubMedGoogle Scholar
  19. Fowler DB, Chauvin LP, Limin AE, Sarhan F (1996a) The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye. Theor Appl Genet 93:554–559CrossRefGoogle Scholar
  20. Fowler DB, Limin AE, Wang SY, Ward RW (1996b) Relationship between low-temperature tolerance and vernalization response in wheat and rye. Can J Plant Sci 76:37–42Google Scholar
  21. Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) x ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680CrossRefPubMedGoogle Scholar
  22. Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091CrossRefPubMedGoogle Scholar
  23. Fricano A, Rizza F, Faccioli P, Pagani D, Pavan P, Stella A, Rossini L, Piffanelli P, Cattivelli L (2009) Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet 119:1335–1348CrossRefPubMedGoogle Scholar
  24. Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65CrossRefPubMedGoogle Scholar
  25. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442CrossRefPubMedGoogle Scholar
  26. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865CrossRefPubMedGoogle Scholar
  27. Gusta LV, O’Connor BJ, Gao YP, Jana S (2001) A re-evaluation of controlled freeze-tests and controlled environment hardening conditions to estimate the winter survival potential of hardy winter wheats. Can J Plant Sci 81:241–246Google Scholar
  28. Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564CrossRefPubMedGoogle Scholar
  29. Hayes HK, Aamodt OS (1927) Inheritance of winter hardiness and growth habit in crosses of Marquis with Minhardi and Minturki wheats. J Agric Res 35:223–236Google Scholar
  30. Hayes PM, Chen FQ, Corey A, Pan A, Chen THH, Baird E, Powell W, Thomas W, Waugh R, Bedo Z, Karsai I, Blake T, Oberthur L (1997) The Dicktoo × Morex population: a model for dissecting components of winterhardiness in barley. In: Li PH, Chen THH (eds) Fifth international plant cold hardiness seminar. Plenum Press, New York, pp 77–87Google Scholar
  31. Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D, van de Kerkhof PC, Traupe H, de Jongh G, den Heijer M, Reis A, Armour JA, Schalkwijk J (2008) Psoriasis is associated with increased β-defensin genomic copy number. Nat Genet 40:23–25CrossRefPubMedGoogle Scholar
  32. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951CrossRefPubMedGoogle Scholar
  33. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917CrossRefPubMedGoogle Scholar
  34. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106CrossRefPubMedGoogle Scholar
  35. Johnson IJ (1953) Registration of barley varieties. Agron J 45:320–323CrossRefGoogle Scholar
  36. Karsai I, Szucs P, Meszaros K, Filichkina T, Hayes PM, Skinner JS, Lang L, Bedo Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative x winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466CrossRefPubMedGoogle Scholar
  37. Knox AK, Li C, Vagujfalvi A, Galiba G, Stockinger EJ, Dubcovsky J (2008) Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Mol Biol 67:257–270CrossRefPubMedGoogle Scholar
  38. Korbel JO, Kim PM, Chen X, Urban AE, Weissman S, Snyder M, Gerstein MB (2008) The current excitement about copy-number variation: how it relates to gene duplications and protein families. Curr Opin Struct Biol 18:366–374CrossRefPubMedGoogle Scholar
  39. Limin AE, Fowler DB (2006) Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta 224:360–366CrossRefPubMedGoogle Scholar
  40. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406CrossRefPubMedGoogle Scholar
  41. McCarroll SA, Altshuler DM (2007) Copy-number variation and association studies of human disease. Nat Genet 39:S37–S42CrossRefPubMedGoogle Scholar
  42. Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m2 in Triticum monococcum. Mol Genet Genomics 275:193–203CrossRefPubMedGoogle Scholar
  43. Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002–21007CrossRefPubMedGoogle Scholar
  44. Pearce RS, Houlston CE, Atherton KM, Rixon JE, Harrison P, Hughes MA, Alison Dunn M (1998) Localization of expression of three cold-induced genes, blt101, blt4. 9, and blt14, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley. Plant Physiol 117:787–795CrossRefPubMedGoogle Scholar
  45. Pennycooke JC, Cheng H, Roberts SM, Yang Q, Rhee SY, Stockinger EJ (2008) The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Mol Biol 67:483–497CrossRefPubMedGoogle Scholar
  46. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, Carter NP, Lee C, Stone AC (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39:1256–1260CrossRefPubMedGoogle Scholar
  47. Quisenberry KS (1931) Inheritance of winter hardiness, growth habit, and stem-rust reaction in crosses between Minhardi Winter and H-44 Spring wheats/by Karl S. Quisenberry. Technical bulletin/United States Department of Agriculture, no 218. U.S. Dept. of Agriculture, WashingtonGoogle Scholar
  48. Quisenberry KS, Reitz LP (1974) Turkey wheat: the cornerstone of an Empire. Agric His 48:98–110Google Scholar
  49. Rasmusson DC, Wilcoxson RW (1979) Registration of Morex barley. Crop Sci 19:293CrossRefGoogle Scholar
  50. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444:444–454CrossRefPubMedGoogle Scholar
  51. Reymond A, Henrichsen CN, Harewood L, Merla G (2007) Side effects of genome structural changes. Curr Opin Genet Dev 17:381–386CrossRefPubMedGoogle Scholar
  52. Roberts DWA (1990) Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome 33:247–259Google Scholar
  53. Scherer SW, Lee C, Birney E, Altshuler DM, Eichler EE, Carter NP, Hurles ME, Feuk L (2007) Challenges and standards in integrating surveys of structural variation. Nat Genet 39:S7–S15CrossRefPubMedGoogle Scholar
  54. Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551CrossRefPubMedGoogle Scholar
  55. Skinner JS, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842CrossRefPubMedGoogle Scholar
  56. Snape JW, Semikhodskii A, Fish L, Sarma RN, Quarrie SA, Galiba G, Sutka J (1997) Mapping frost tolerance loci in wheat and comparative mapping with other cereals. Acta Agric Hung 45:265–270Google Scholar
  57. Snape JW, Sarma R, Quarrie SA, Fish L, Galiba G, Sutka J (2001) Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 120:309–315CrossRefGoogle Scholar
  58. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040CrossRefPubMedGoogle Scholar
  59. Stockinger EJ, Cheng H, Skinner JS (2006) Structural organization of barley CBF genes coincident with QTLs for cold hardiness. In: Chen THH, Uemura M, Fujikawa S (eds) Cold hardiness in plants: molecular genetics, cell biology and physiology. CABI Publishing Oxon, UK, pp 53–63Google Scholar
  60. Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51:308–321CrossRefPubMedGoogle Scholar
  61. Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42:41–44CrossRefGoogle Scholar
  62. Takahashi R, Yasuda S (1971) Genetics of earliness and growth habit in barley. In: Nilan RA (ed) Barley genetics II; proceedings of the second international barley genetics symposium. Washington State University Press, Pullman, pp 388–408Google Scholar
  63. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  64. Tóth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514CrossRefPubMedGoogle Scholar
  65. Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA 100:13099–13104CrossRefPubMedGoogle Scholar
  66. Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357CrossRefPubMedGoogle Scholar
  67. Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genomics 269:60–67PubMedGoogle Scholar
  68. Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genomics 274:506–514CrossRefPubMedGoogle Scholar
  69. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211CrossRefPubMedGoogle Scholar
  70. von Zitzewitz J, Szucs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen TH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467CrossRefGoogle Scholar
  71. Wilen RW, Fu P, Robertson AJ, Gusta LV (1996) A comparison of the cold hardiness potential of spring cereals and vernalized and non-vernalized winter cereals. In: Li PH, Chen THH (eds) Fifth international plant cold hardiness seminar. Plenum Press, Corvallis, pp 191–201Google Scholar
  72. Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383CrossRefPubMedGoogle Scholar
  73. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268CrossRefPubMedGoogle Scholar
  74. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92CrossRefPubMedGoogle Scholar
  75. Zeven AC, van Hintum TJL (1992) Classification of landraces and improved cultivars of hexaploid wheats (Triticum aestivum, T. compactum and T. spelta) grown in the USA and described in 1922. Euphytica 59:33–47Google Scholar
  76. Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrea K. Knox
    • 1
    • 5
  • Taniya Dhillon
    • 1
  • Hongmei Cheng
    • 1
    • 3
  • Alessandro Tondelli
    • 1
    • 4
  • Nicola Pecchioni
    • 2
  • Eric J. Stockinger
    • 1
    Email author
  1. 1.Department of Horticulture and Crop ScienceThe Ohio State University/Ohio Agricultural Research and Development Center (OARDC)WoosterUSA
  2. 2.Dipartimento di Scienze AgrarieUniversità degli Studi di Modena e Reggio EmiliaReggio EmiliaItaly
  3. 3.Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
  4. 4.CRA Genomic Research CentreFiorenzuola d’ArdaItaly
  5. 5.Department of BiologyThompson Biology LaboratoryWilliamstownUSA

Personalised recommendations