Advertisement

Theoretical and Applied Genetics

, Volume 120, Issue 8, pp 1511–1523 | Cite as

Genetic structure among sorghum landraces as revealed by morphological variation and microsatellite markers in three agroclimatic regions of Burkina Faso

  • Clarisse Barro-Kondombo
  • Fabrice Sagnard
  • Jacques ChantereauEmail author
  • Monique Deu
  • Kirsten vom Brocke
  • Patrick Durand
  • Eric Gozé
  • Jean Didier Zongo
Original Paper

Abstract

Diversity among 124 sorghum landraces from 10 villages surveyed in 3 regions of Burkina Faso covering different agroecological zones was assessed by 28 agromorphological traits and 29 microsatellite markers. 94.4% of the landraces collected belonged to the botanical race guinea (consisting of 96.6% guinea gambicum and 3.4% guinea margaritiferum), 74.2% had white kernels, 13.7% had orange and 12.1% had red kernels. Compared to the “village nested within zone” factor, the “variety nested within village within zone” factor predominately contributed to the diversity pattern for all nine statistically analysed quantitative traits. The multivariate analyses performed on ten morphological traits identified five landrace groups, and of these, the red kernel sorghum types appeared the most homogenous. 2 to 17 alleles were detected per locus with a mean 4.9 alleles per locus and a gene diversity (He) of 0.37. Landraces from the sub-Sahelian zone had the highest gene diversity (He = 0.38). Cluster analysis revealed that the diversity was weakly stratified and could not be explained by any biophysical criteria. One homogenous guinea margaritiferum group was distinguished from other guinea landraces. The red kernel type appeared to be genetically distinct from all other guinea landraces. The kernel colour was the principal structuring factor. This is an example of a homogeneous group of varieties selected for a specific use (for local beer preparation), mainly grown around the households in compound fields, and presenting particular agromorphological and genetic traits. This is the most original feature of sorghum diversity in Burkina Faso and should be the focus of special conservation efforts.

Keywords

Sorghum Kernel Colour White Kernel Sorghum Variety Kernel Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Fonds Français pour l’Environnement Mondial (FFEM). We thank the various people who participated in the 2003 and 2004 sampling and specifically farmers who shared their varieties and knowledge. We thank Lauriane Rouan for the statistical treatment of the agromorphological data through the SAS software and Anthony Mc Gowan for editing the English of the final draft manuscript. We lastly thank André Charrier for his critical review of the manuscript..

References

  1. Appa Rao S, Prasada RF, Mengesha MH, Gopal-Reddy V (1996) Morphological diversity in sorghum germplasm from India. Genet Resour Crop Evol 43:559–567CrossRefGoogle Scholar
  2. Barnaud A, Deu M, Garine E, McKey D, Joly HI (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248CrossRefPubMedGoogle Scholar
  3. Barro-Kondombo C, vom Brocke K, Chantereau J, Sagnard F, Zongo JD (2008) Variabilité phénotypique des sorghos locaux de deux régions agricoles du Burkina Faso : la Boucle du Mouhoun et le Centre-Nord. Cah Agric 17:107–113Google Scholar
  4. Benzecri JP (1984) L’analyse des données, 4th edn. Université Paris VI, Dunod Google Scholar
  5. Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002CrossRefPubMedGoogle Scholar
  6. Brown MS, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, Gonzalez-Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93:190–198CrossRefGoogle Scholar
  7. Brush SB (2000) The issue of in situ conservation of crop genetic resources. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IDRC/IPGRI/Lewis Publishers, Boca Raton, pp 3–26Google Scholar
  8. Casa MA, Mitchell SE, Hamblin HS, Sun H, Bowers JE, Paterson AH, Aquadro CF, Kresovich S (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111:23–30CrossRefPubMedGoogle Scholar
  9. Christinck A, vom Brocke K, Kshirsagar KG, Weltzien E, Bramel-Cox PJ (2000) Participatory methods for collecting germplasm: experiences with farmers in Rajasthan, India. Genet Resour Crop Evol 121:1–9Google Scholar
  10. Clerget B, Rattunde HFW, Dagnoko S, Chantereau J (2007) An easy way to assess photoperiod sensitivity in sorghum: relationships of the vegetative-phase duration and photoperiod sensitivity. J SAT Agric Res 3(1). http://www.icrisat.org/journal/Sorgum_Millet_other_Cereals3.htm
  11. Cui YX, Xu GW, Magill CW, Schertz KF, Hart GE (1995) RFLP based assay of Sorghum bicolor (L.) Moench genetic diversity. Theor Appl Genet 90:787–796CrossRefGoogle Scholar
  12. de Oliveira AC, Richter T, Bennetzen JL (1996) Regional and racial specificities in sorghum germplasm assessed with DNA markers. Genome 39:579–587CrossRefPubMedGoogle Scholar
  13. Deu M, Rattunde F, Chantereau J (2006) A global view of genetic diversity in cultivated sorghum using a core collection. Genome 49:168–180PubMedGoogle Scholar
  14. Deu M, Sagnard F, Chantereau J, Calatayud C, Herault D, Mariac C, Pham J, Vigouroux Y, Kapran I, Traoré PS, Mamadou A, Gérard B, Ndjeunga J, Bezançon G (2008) Niger-wide assessment of in situ sorghum genetic diversity with microsatellites markers. Theor Appl Genet 116:903–913CrossRefPubMedGoogle Scholar
  15. Djé Y, Forciolo D, Ater M, Lefèbvre C, Vekemans X (1999) Assessing population genetic structure of sorghum landraces from North-Western Morocco using allozyme and microsatellite markers. Theor Appl Genet 99:157–163CrossRefGoogle Scholar
  16. Djé Y, Heuertz M, Lefèbvre C, Vekemans X (2000) Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet 100:918–925CrossRefGoogle Scholar
  17. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839CrossRefGoogle Scholar
  18. Excoffier LGL, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  19. Fahmy T (1999) XLSTAT-PRO. Paris, FranceGoogle Scholar
  20. Folkertsma RF, Rattunde HFW, Chandra S, Soma Raju G, Hash CT (2005) The pattern of genetic diversity of guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. Theor Appl Genet 111:399–409CrossRefPubMedGoogle Scholar
  21. Folliard PC, Traoré PCS, Vaksmann M, Kouressy M (2004) Modeling of sorghum response to photoperiod: a threshold–hyperbolic approach. Field Crops Res 89:59–70CrossRefGoogle Scholar
  22. Ghebru B, Schmidt RJ, Bennetzen JL (2002) Genetic diversity of Eritrean sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105:229–236CrossRefPubMedGoogle Scholar
  23. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/popgen/softwares/fstat.htm
  24. Grenier C, Bramel PJ, Dahlberg JA, El-Ahmadi A, Mahmoud M, Peterson GC, Rosenow DT, Ejeta G (2004) Sorghums of the Sudan: analysis of regional diversity and distribution. Genet Resour Crop Evol 51:489–500CrossRefGoogle Scholar
  25. Guinko S (1984). Végétation de la Haute-Volta. Phd Thesis, Université Bordeaux III, FranceGoogle Scholar
  26. Harlan JR (1975) Crops and man. American Society of Agronomy, MadisonGoogle Scholar
  27. Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176Google Scholar
  28. IBPGR/ICRISAT (1993) Descriptors for sorghum [Sorghum bicolor (L.) Moench]. International Board for Plant Genetic Ressources, Rome, Italy; International Crops Research Institute for the Semi-Arid Tropics, Patancheru, IndiaGoogle Scholar
  29. Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:955–965CrossRefPubMedGoogle Scholar
  30. Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448CrossRefGoogle Scholar
  31. Kouressy M, Bazile D, Vaksmann M, Soumaré M, Doucouré T, Sidibé A (2003) La dynamique des agroécosystémes : un facteur explicatif de l’érosion variétale du sorgho. In: Dugué P, Jouve P (eds) Organisation spatiale et gestion des ressources et des territoires ruraux. Actes du colloque international, 25-27 février 2003, Montpellier, France, pp 42–50Google Scholar
  32. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  33. Menkir A, Goldsbrough P, Ejeta G (1997) RAPD based assessment of genetic diversity in cultivated races of sorghum. Crop Sci 37:564–569CrossRefGoogle Scholar
  34. Ministère de l’Agriculture de l’Hydraulique et des Ressources Halieutiques/Direction des Statistiques Agricoles (2006) Données sur les productions nationales. http://agristat.bf.tripod.com
  35. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  36. Ollitrault P (1987) Evaluation génétique des sorghos cultivés (Sorghum bicolor L. Moench) par l’analyse conjointe des diversités enzymatique et morpho-physiologique. Relation avec les sorghos sauvages. PhD Thesis, Université Paris XI, FranceGoogle Scholar
  37. Ollitrault P, Noyer JL, Chantereau J, Glaszmann JC (1997) Structure génétique et dynamique des variétés traditionnelles de sorgho au Burkina Faso. In: Begic A (ed) Gestion des Ressources Génétiques des Plantes en Afrique des Savanes. IER-BRG Solagral, Bamako, Mali, pp 231–240Google Scholar
  38. Patterson HD, Williams ER (1976) A new class of resolvable incomplete block designs. Biometrika 63:83–92CrossRefGoogle Scholar
  39. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin
  40. Saitou N, Nei M (1987) The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  41. Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, Paterson AH, Kresovich S (2002) Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor Appl Genet 105:912–920CrossRefPubMedGoogle Scholar
  42. Snowden JD (1936) The cultivated races of Sorghum. Adlard, London, UKGoogle Scholar
  43. Sokal RR, Michener CD (1958) A statistical method for evoluting systematic relationships. Univ Kansas Sci Bull 38:1409–1438Google Scholar
  44. Stachel M, Lelly T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248CrossRefGoogle Scholar
  45. Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72CrossRefGoogle Scholar
  46. Teshome A, Baum BR, Fahrig L, Torrance JK, Arnason TJ, Lambert JD (1997) Sorghum [Sorghum bicolor (L.) Moench] landrace variation and classification in north Shewa and South Welo, Ethiopia. Euphytica 97:255–263CrossRefGoogle Scholar
  47. Traoré SB, Reyniers F, Vaksmann M, Kone B, Sidibé A, Yoroté A, Yattara K, Kouressy M (2000) Adaptation à la sécheresse des écotypes locaux de sorghos du Mali. Sécheresse 11:227–237Google Scholar
  48. Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from Southern Africa by RAPD, AFLPs and SSRs. Theor Appl Genet 106:1316–1325PubMedGoogle Scholar
  49. vom Brocke K, Trouche G, Zongo S, Bitie A, Oualbéogo A, Barro-Kondombo C, Weltzien E, Chantereau J (2008) Création et amélioration in situ de populations à base génétique large avec les agriculteurs au Burkina Faso. Cah Agric 17:146–153Google Scholar
  50. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  51. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  52. Wendorf F, Close AE, Schild R, Wasylikowa K, Housley RA, Harlan JR, Krolik H (1992) Saharan exploitation of plants 8000 years BP. Nature 359:721–724CrossRefGoogle Scholar
  53. Wilcoxon F (1945) Individual comparison by ranking methods. Biometrics 1:80–83CrossRefGoogle Scholar
  54. Yagoua ND (1994) Caractérisation du sorgho pluvial, (Sorghum bicolor (L.) Moench), de la zone soudanienne du Tchad. In actes de l’atelier de formation sur les variétés locales de sorgho du 10–14 octobre 1994. Samanko, Mali, pp 44–59Google Scholar
  55. Zongo JD (1991) Ressources génétiques des sorghos (Sorghum bicolor L. Moench) du Burkina Faso: evaluation agromorphologique et génétique. PhD Thesis, Université d’Abidjan, Côte d’IvoireGoogle Scholar
  56. Zongo JD, Gouyon PH, Sarr A, Sandmeier M (2005) Genetic diversity and phylogenic relations among Sahelian sorghum accessions. Genet Resour Crop Evol 52:869–878CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Clarisse Barro-Kondombo
    • 1
  • Fabrice Sagnard
    • 2
    • 3
  • Jacques Chantereau
    • 4
    Email author
  • Monique Deu
    • 2
  • Kirsten vom Brocke
    • 4
    • 5
  • Patrick Durand
    • 6
  • Eric Gozé
    • 7
  • Jean Didier Zongo
    • 8
  1. 1.INERA, CRREA du CentreKoudougouBurkina Faso
  2. 2.CIRAD, UMR Développement et Amélioration des PlantesMontpellierFrance
  3. 3.International Center of Research for the Semi-Arid Tropics (ICRISAT)NairobiKenya
  4. 4.CIRAD, UPR Adaptation Agroécologique et Innovation VariétaleMontpellierFrance
  5. 5.International Center of Research for the Semi-Arid Tropics (ICRISAT)BamakoMali
  6. 6.IRD, UMR CNRS-IRD2724-Génétique et Evolution des maladies infectieusesMontpellier Cedex 5France
  7. 7.CIRAD, UPR Systèmes de Culture AnnuelsMontpellierFrance
  8. 8.Université de Ouagadougou, UFR Sciences de la Vie et de la Terre, 03Ouagadogou 03Burkina Faso

Personalised recommendations