Advertisement

Theoretical and Applied Genetics

, Volume 120, Issue 7, pp 1301–1313 | Cite as

Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger

  • Monique DeuEmail author
  • F. Sagnard
  • J. Chantereau
  • C. Calatayud
  • Y. Vigouroux
  • J. L. Pham
  • C. Mariac
  • I. Kapran
  • A. Mamadou
  • B. Gérard
  • J. Ndjeunga
  • G. Bezançon
Original Paper

Abstract

The dynamics of crop genetic diversity need to be assessed to draw up monitoring and conservation priorities. However, few surveys have been conducted in centres of diversity. Sub-Saharan Africa is the centre of origin of sorghum. Most Sahel countries have been faced with major human, environmental and social changes in recent decades, which are suspected to cause genetic erosion. Sorghum is the second staple cereal in Niger, a centre of diversity for this crop. Niger was submitted to recurrent drought period and to major social changes during these last decades. We report here on a spatio-temporal analysis of sorghum genetic diversity, conducted in 71 villages covering the rainfall gradient and range of agro-ecological conditions in Niger’s agricultural areas. We used 28 microsatellite markers and applied spatial and genetic clustering methods to investigate change in genetic diversity over a 26-year period (1976–2003). Global genetic differentiation between the two collections was very low (F st = 0.0025). Most of the spatial clusters presented no major differentiation, as measured by F st, and showed stability or an increase in allelic richness, except for two of them located in eastern Niger. The genetic clusters identified by Bayesian analysis did not show a major change between the two collections in the distribution of accessions between them or in their spatial location. These results suggest that farmers’ management has globally preserved sorghum genetic diversity in Niger.

Keywords

Sorghum Allelic Richness Spatial Cluster Genetic Group Genetic Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to the farmers from Niger who contributed to this study by providing seed samples and information on their varieties. We also thank the different people who participated in the 2003 collection, and particularly Djibo Moussa, Moussa Tidjani, and Hassane Yahaya Bissala. This work was supported by Institut Français de la Biodiversité (IFB). Part of this work was carried out using the resources of the Computational Biology Service Unit from Cornell University.

Supplementary material

122_2009_1257_MOESM1_ESM.doc (64 kb)
Supplementary Electronic Files 1 and 2 (DOC 64 kb)

References

  1. Allinne C, Mariac C, Vigouroux Y, Bezançon G, Couturon E, Moussa D, Tidjani M, Pham JL, Robert T (2008) Role of seed flow on the pattern and dynamics of pearl millet (Pennisetum glaucum [L.] R. Br.) genetic diversity assessed by AFLP markers: a study in south-western Niger. Genetica 133:167–178CrossRefPubMedGoogle Scholar
  2. Barnaud A, Deu M, Garine E, McKey D, Joly H (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248CrossRefPubMedGoogle Scholar
  3. Barry MB, Pham JL, Béavogui S, Ghesquière A, Ahmadi N (2008) Diachronic (1979–2003) analysis of rice genetic diversity in Guinea did not reveal genetic erosion. Genet Resour Crop Evol 55:723–733CrossRefGoogle Scholar
  4. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2002) Genetix 4.04, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France. (Available from http://www.univ-montp2.fr/~genetix/genetix/genetix.htm)
  5. Bellon MR (1996) The dynamics of crop infraspecific diversity: a conceptual framework at the farmer level. Econ Bot 50:26–39Google Scholar
  6. Bellon MR (2009) Do we need crop landraces for the future? Realizing the global option value of in situ conservation. In: Kontoleon A, Pascual U, Smale M (eds) Agrobiodiversity, conservation and economic development. Routledge, New York, pp 51–61Google Scholar
  7. Ben Mohamed A, Van Duivenbooden N, Abdoussallam S (2002) Impact of climate change on agricultural production in the Sahel—methodological approach and case study for millet in Niger. Clim Change 54:327–348CrossRefGoogle Scholar
  8. Bezançon G, Pham JL, Deu M, Vigouroux Y, Sagnard F, Mariac C, Kapran I, Mamadou A, Gérard B, Ndjeunga J, Chantereau J (2009) Changes in the diversity, geographic distribution of cultivated millet (Pennisetum glaucum [L.] R. Br.), sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet Resour Crop Evol 56:223–236CrossRefGoogle Scholar
  9. Brown AHD (2000) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IPGRI/IDRC/Lewis Publishers, Boca Raton, pp 29–48Google Scholar
  10. Brush SB (1989) Rethinking crop genetic resource conservation. Conserv Biol 3:19–29CrossRefGoogle Scholar
  11. Brush SB, Meng E (1998) Farmers’ valuation and conservation of crop genetic resources. Genet Resour Crop Evol 45:139–150CrossRefGoogle Scholar
  12. Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, Paterson AH, Aquadro CF, Kresovich S (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111:23–30CrossRefPubMedGoogle Scholar
  13. Comps B, Gömöry D, Letouzey J, Thiebaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397PubMedGoogle Scholar
  14. Costis C (2005) Diversité des mils et sorghos cultivés au Niger: facteurs agro-économiques, socio-économiques et les modes de gestion des variétés. Mémoire de DESS “Gestion des systémes agro-sylvo-pastoraux en zones tropicales”, Université Paris XII, p 51Google Scholar
  15. Cromwel E, van Oosterhoust S (2000) On-farm conservation of crop diversity: policy and institutional lessons from Zimbabwe. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IPGRI/IRDC/Lewis Publishers, Boca Raton, pp 217–238Google Scholar
  16. Deu M, Sagnard F, Chantereau J, Calatayud C, Hérault D, Mariac C, Pham JL, Vigouroux Y, Kapran I, Traoré PS, Mamadou A, Gérard B, Ndjeunga J, Bezançon G (2008) Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers. Theor Appl Genet 116:903–916CrossRefPubMedGoogle Scholar
  17. Donini R, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917CrossRefGoogle Scholar
  18. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839CrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  20. FAO-Orstom (1977) Prospections des mils pénicillaires et sorghos en Afrique de l’Ouest – Niger- Campagne 1976. ReportGoogle Scholar
  21. FAO (2008) FAOSTAT database. Available from http://www.fao.org/
  22. Figliuolo G, Mazzeo M, Greco I (2007) Temporal variation of diversity in Italian durum wheat germplasm. Genet Resour Crop Evol 54:615–626CrossRefGoogle Scholar
  23. Gao H, Williamson S, Bustamante CD (2007) An MCMC approach for the joint inference of population structure and inbreeding rate from multi-locus genotype data. Genetics 176:1635–1651CrossRefPubMedGoogle Scholar
  24. Goudet J (2002) FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3.2). Available from http://www.unil.ch/izea/softwares/fstat.html
  25. Harlan JR, de Wet JMJ (1972) Simplified classification of cultivated sorghum. Crop Sci 12:172–176CrossRefGoogle Scholar
  26. Hulme M (2001) Climatic perspectives on Sahelian desiccation: 1973–1998. Global Environ Change 11:19–29CrossRefGoogle Scholar
  27. Jarvis DI, Brown AHD, Hung Cuong P, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T, Sawadogo M, Mar I, Sadiki M, Thi-Ngoc Hue G, Arias-Reyes L, Balma D, Bajracharya J, Castillo F, Rijal D, Belqadi L, Rana R, Saidi S, Ouedraogo J, Zangre R, Rhrib K, Rhrib K, Chavez JL, Schoen D, Sthapit B, De Santis P, Fadda C, Hogdkin T (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci USA 105:5326–5331CrossRefPubMedGoogle Scholar
  28. Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:955–965CrossRefPubMedGoogle Scholar
  29. Kouressy M, Traoré S, Vaksmann M, Grum M, Maikano I, Soumaré M, Traoré PS, Bazile D, Dingkuhn M, Sidibé A (2008) Adaptation des sorghos du Mali à la variabilité climatique. Cah Agric 17(2):95–100Google Scholar
  30. Lacy SM, Cleveland DA, Soleri D (2006) Farmer choice of sorghum varieties in southern Mali. Hum Ecol 34(3):331–353CrossRefGoogle Scholar
  31. Le Clerc V, Bazante F, Baril C, Guiard J, Zhang D (2005) Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet 100:294–302CrossRefGoogle Scholar
  32. Le Clerc V, Cadot V, Canadas M, Lallemand J, Guèrin D, Boulineau F (2006) Indicators to assess temporal genetic diversity in the French catalogue: no losses for maize and peas. Theor Appl Genet 113:1197–1209CrossRefPubMedGoogle Scholar
  33. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Available from http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php
  34. Malysheva-Otto L, Ganal MW, Law JR, Reeves JC, Röder MS (2007) Temporal trends of genetic diversity in European barley cultivars (Hordeum vulgare L.). Mol Breed 20:309–322CrossRefGoogle Scholar
  35. Martos V, Royo C, Rharrabti Y, Garcia del Moral LF (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Fields Crop Res 91:107–111CrossRefGoogle Scholar
  36. Mekbib F (2007) Infra-specific folk taxonomy in sorghum (Sorghum bicolor (L.) Moench) in Ethiopia: folk nomenclature, classification and criteria. J Ethnobiol Ethnomed 3:38CrossRefPubMedGoogle Scholar
  37. Mekbib F (2008) Genetic erosion of sorghum (Sorghum bicolor (L.) Moench) in the centre of diversity, Ethiopia. Genet Resour Crop Evol 55:351–364CrossRefGoogle Scholar
  38. Morin SR, Calibo M, Garcia-Belen M, Pham JL, Palis F (2002) Natural hazards and genetic diversity in rice. Agric Hum Values 19:133–149CrossRefGoogle Scholar
  39. Nei M (1987) Molecular evolutionary genetics. Columbia University press, New YorkGoogle Scholar
  40. Nersting LG, Andersen SB, Von Bothmer R, Gullord M, Jørgensen RB (2006) Morphological and molecular diversity of Nordic oat through one hundred years of breeding. Euphytica 150:327–337CrossRefGoogle Scholar
  41. Nicholson S (2005) On the question of the ‘‘recovery’’ of the rains in the West African Sahel. J Arid Environ 63:615–641CrossRefGoogle Scholar
  42. Olsson L, Eklundh L, Ardö J (2005) A recent greening of the Sahel—trends, patterns and potential causes. J Arid Environ 63:556–566CrossRefGoogle Scholar
  43. Ostrowski MF, David J, Santoni S, McKhann H, Reboud X, Le Corre V, Camilleri C, Brunel D, Bouchez D, Faure B, Bataillon T (2006) Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol Ecol 15:1507–1517CrossRefPubMedGoogle Scholar
  44. Peroni N, Hanazaki N (2002) Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic Forest. Agric Ecosyst Environ 92:171–183CrossRefGoogle Scholar
  45. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  46. Pritchard JK, Wen W (2002) Documentation for Structure software: version 2 (http://pritch.bsd.uchicago.edu)
  47. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  48. Rana RB, Garforth C, Stapith B, Jarvis D (2007) Influence of socio-economic and cultural factors in rice varietal diversity management on-farm in Nepal. Agric Hum Values 24:461–472CrossRefGoogle Scholar
  49. Reif JC, Hamrit S, Heckenberger M, Schipprack W, Maurer HP, Bohn M, Melchinger AE (2005) Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl Genet 111:838–845CrossRefPubMedGoogle Scholar
  50. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldmann MW (2002) Genetic structure of human populations. Science 298:2381–2385CrossRefPubMedGoogle Scholar
  51. Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930CrossRefPubMedGoogle Scholar
  52. Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170CrossRefPubMedGoogle Scholar
  53. Snowden JD (1936) The cultivated races of sorghum. Adlard, London, pp 1–274Google Scholar
  54. Teklu Y, Hammer K (2006) Farmers’ perception and genetic erosion of tetraploid wheat landraces in Ethiopia. Genet Resour Crop Evol 53:1099–1113CrossRefGoogle Scholar
  55. Teshome A, Patterson D, Asfew Z, Torrance JK, Arnason JT (2007) Changes of Sorghum bicolor landrace diversity and farmers’ selection criteria over space and time, Ethiopia. Genet Resour Crop Evol 54:1219–1233CrossRefGoogle Scholar
  56. Thomas DSG, Twyman C, Osbahr H, Hewitson B (2007) Adaptation to climate changes and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Clim Change 83:301–322CrossRefGoogle Scholar
  57. Traoré SB, Reyniers FN, Vaksmann M, Koné B, Sidibé A, Yoroté A, Yattara K, Kouressy M (2000) Adaptation à la sècheresse des écotypes locaux de sorghos au Mali. Sècheresse 11:227–237Google Scholar
  58. Van Etten J (2006) Changes in farmers’ knowledge of maize diversity in highland Guatemala, 1927/37–2004. J Ethnobiol Ethnomed 2:12CrossRefPubMedGoogle Scholar
  59. Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WD, Smith JS, Doebley J (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19(8):1251–1260PubMedGoogle Scholar
  60. Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630CrossRefPubMedGoogle Scholar
  61. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  62. Willemen L, Scheldeman X, Soto Cabellos V, Rafael Salazar S, Guarino L (2007) Spatial patterns of diversity and genetic erosion of traditional cassava (Manihot esculenta Crantz) in the Peruvian Amazon: an evaluation of socio-economic and environmental indicators. Genet Resour Crop Evol 54:1599–1612CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Monique Deu
    • 1
    Email author
  • F. Sagnard
    • 1
    • 2
  • J. Chantereau
    • 3
  • C. Calatayud
    • 1
  • Y. Vigouroux
    • 4
  • J. L. Pham
    • 4
  • C. Mariac
    • 5
  • I. Kapran
    • 6
  • A. Mamadou
    • 6
  • B. Gérard
    • 7
  • J. Ndjeunga
    • 7
  • G. Bezançon
    • 5
  1. 1.CIRAD, UMR DAPMontpellierFrance
  2. 2.International Crop Research Institute for the Semi-Arid Tropics (ICRISAT)NairobiKenya
  3. 3.CIRAD, UPR AIVAMontpellierFrance
  4. 4.Institut de Recherche pour le Développement (IRD), UMR DIAPCMontpellier Cedex 5France
  5. 5.Institut de Recherche pour le Développement (IRD), UMR DIAPCNiameyNiger
  6. 6.Institut National de la Recherche Agronomique du Niger (INRAN)NiameyNiger
  7. 7.International Crop Research Institute for the Semi-Arid Tropics (ICRISAT)NiameyNiger

Personalised recommendations