Theoretical and Applied Genetics

, Volume 120, Issue 6, pp 1151–1162 | Cite as

Evidence for genetic differentiation and divergent selection in an autotetraploid forage grass (Arrhenatherum elatius)

  • Stefan Georg MichalskiEmail author
  • Walter Durka
  • Anke Jentsch
  • Juergen Kreyling
  • Sven Pompe
  • Oliver Schweiger
  • Evelin Willner
  • Carl Beierkuhnlein
Original Paper


The use of local provenances in restoration, agriculture and forestry has been identified as measure to sustain biological diversity and to improve local productivity. However, the delineation of regional provenances is challenging because it requires the identification of well-defined groups based on spatiogenetic differentiation and/or the evidence of local adaptation. In this study, we investigate genetic variation at 186 AFLP loci in 46 European accessions of the important grassland species Arrhenatherum elatius and ask (1) whether genetic variation within accessions differs between European geographical regions; (2) at which spatial scale populations are structured across Europe and (3) whether putatively adaptive markers contribute to this pattern and whether these markers can be related to climatic site conditions. Basic expectations of population genetics are likely to be altered in autotetraploid species, thus, we adopted a band-based approach to estimate genetic diversity and structuring. Compared to other grasses A. elatius showed high genetic diversity and considerable differentiation among accessions (ΦST = 0.24). Accessions separated in a Western European and a Central/Eastern European group, without further structure within groups. A genome scan approach identified four potentially adaptive loci, whose band frequencies correlated significantly with climatic parameters, suggesting that genetic differentiation in A. elatius is also the result of adaptive processes. Knowledge on adaptive loci might in the long run also help to adapt ecosystems to adverse climate change effects through assisted migration of ecotypes rather than introduction of new species.


Genetic Differentiation Grassland Species Adaptive Locus Double Reduction Adaptive Genetic Divergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to express our gratitude to the gene banks of the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben, the Institute for Agrobotany in Tápiószele, and the Crop Research Institute (RICP) in Prague–Ruzyne for providing seed material of A. elatius.


  1. Anttila CK, King RA, Ferris C, Ayres DR, Strong DR (2000) Reciprocal hybrid formation of Spartina in San Francisco Bay. Mol Ecol 9:765–770CrossRefPubMedGoogle Scholar
  2. Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plant: Implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 3–30Google Scholar
  3. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond Ser B Biol Sci 263:1619–1626CrossRefGoogle Scholar
  4. Bever JD, Felber F (1992) The theoretical population genetics of autotetraploidy. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology. Oxford University Press, New York, USA, pp 185–217Google Scholar
  5. Bischoff A, Cremieux L, Smilauerova M, Lawson CS, Mortimer SR, Dolezal J, Lanta V, Edwards AR, Brook AJ, Macel M, Leps J, Steinger T, Muller-Scharer H (2006) Detecting local adaptation in widespread grassland species—the importance of scale and local plant community. J Ecol 94:1130–1142CrossRefGoogle Scholar
  6. Bleeker W, Schmitz U, Ristow M (2007) Interspecific hybridisation between alien and native plant species in Germany and its consequences for native biodiversity. Biol Conserv 137:248–253CrossRefGoogle Scholar
  7. Blum MJ, Bando KJ, Katz M, Strong DR (2007) Geographic structure, genetic diversity and source tracking of Spartina alterniflora. J Biogeogr 34:2055–2069CrossRefGoogle Scholar
  8. Buch C, Hetzel I, Loos GH, Keil P (2007) Grannenloser Glatthafer (Arrhenatherum elatius (L.) P.B. ex J. Presl & C. Presl; Poaceae) in der Duisburger Rheinaue. Floristische Rundbriefe 40:9–18Google Scholar
  9. Cavagnaro PF, Cavagnaro JB, Lemes JL, Masuelli RW, Passera CB (2006) Genetic diversity among varieties of the native forage grass Trichloris crinita based on AFLP markers, morphological characters, and quantitative agronomic traits. Genome 49:906–918CrossRefPubMedGoogle Scholar
  10. Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Philos Trans R Soc Lond Ser B Biol Sci 358:1051–1070CrossRefGoogle Scholar
  11. Conert HJ (1998) Illustrierte Flora von Mitteleuropa: Band I Teil 3 Spermatophyta: Angiospermae: Monocotyledones 1(2) Poaceae (Echte Gräser oder Süßgräser). Parey, BerlinGoogle Scholar
  12. Cuguen J, Acheroy M, Loutfi AL, Petit D, Vernet P (1989) Breeding system differentiation in Arrhenatherum elatius populations: Evolution toward selfing? Evol Trends Plants 3:17–24Google Scholar
  13. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20Google Scholar
  14. Ducousso A, Petit D, Valero M, Vernet P (1990) Genetic variation between and within populations of a perennial grass - Arrhenatherum elatius. Heredity 65:179–188CrossRefGoogle Scholar
  15. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  16. Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the authorGoogle Scholar
  17. Gaudeul M, Till-Bottraud I, Barjon F, Manel S (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity 92:508–518CrossRefPubMedGoogle Scholar
  18. Godt MJW, Hamrick JL, Cheplick GP (1998) Allozyme diversity in the grasses. Population biology of grasses. Cambridge University Press, Cambridge, pp 11–29CrossRefGoogle Scholar
  19. Hamrick JL, Godt MJW (1996) Effects of life-history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B Biol Sci 351:1291–1298CrossRefGoogle Scholar
  20. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  21. Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155CrossRefGoogle Scholar
  22. Hufford KM, Mazer SJ, Camara MD (2007) Local adaptation and effects of grazing among seedlings of two native california bunchgrass species: Implications for restoration. Restor Ecol 16:59–69CrossRefGoogle Scholar
  23. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914CrossRefGoogle Scholar
  24. Jenkin TJ (1931) Swollen stem internodes and other characters in Arrhenatherum Beauv. Bull Welsh Plant Breed Station Ser H 12:126–147Google Scholar
  25. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374CrossRefGoogle Scholar
  26. Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C (2009) Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob Change Biol 15:837–849CrossRefGoogle Scholar
  27. Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPH, Pereira JS, Prinz A, Scherer-Lorenzen M, Siamantziouras ASD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544CrossRefGoogle Scholar
  28. Jump AS, Penuelas J, Rico L, Ramallo E, Estiarte M, Martinez-Izquierdo JA, Lloret F (2008) Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Glob Chang Biol 14:637–643CrossRefGoogle Scholar
  29. Kauter D (2002) »Sauergras«und»Wegbreit«?: Die Entwicklung der Wiesen in Mitteleuropa zwischen 1500 und 1900. In: Böcker R, Fangmeier A, Kohler A (eds) Heimbach, StuttgardGoogle Scholar
  30. Kleinschmit JRG, Kownatzki D, Gegorius HR (2004) Adaptational characteristics of autochthonous populations—consequences for provenance delineation. For Ecol Manage 197:213–224CrossRefGoogle Scholar
  31. Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14:415–424CrossRefPubMedGoogle Scholar
  32. Kreyling J, Wenigmann M, Beierkuhnlein C, Jentsch A (2008) Effects of extreme weather events on plant productivity and tissue die-back are modified by community composition. Ecosystems 11:752–763CrossRefGoogle Scholar
  33. Lefebre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In: Shaw AJ (ed) Heavy metal tolerance in plants: Evolutionary aspects. CRC Press, Boca Raton, Florida, USA, pp 285–299Google Scholar
  34. Oksanen J, Kindt R, Legendre P, Oh B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2008) Vegan: community ecology package. R package version 1.15-0Google Scholar
  35. Mahmoud A, Grime JP, Furness SB (1975) Polymorphism in Arrhenatherum elatius (L.) Beauv Ex J. & C. Presl. New Phytol 75:269–276Google Scholar
  36. McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?” - A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440CrossRefGoogle Scholar
  37. Mealor BA, Hild AL (2006) Potential selection in native grass populations by exotic invasion. Mol Ecol 15:2291–2300CrossRefPubMedGoogle Scholar
  38. Mijnsbrugge KV, Bischoff A, Smith B (2009) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol (in press)Google Scholar
  39. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Working paper 55. Tyne Centre for Climate Change Research, University of East Anglia, Norwich, UKGoogle Scholar
  40. Monte JV, De Nova PJG, Soler C (2001) AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas 135:233–238CrossRefPubMedGoogle Scholar
  41. Nosil P, Funk DJ, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18:375–402CrossRefPubMedGoogle Scholar
  42. Pannell JR, Dorken ME (2006) Colonisation as a common denominator in plant metapopulations and range expansions: effects on genetic diversity and sexual systems. Landscape Ecol 21:837–848CrossRefGoogle Scholar
  43. Parzies HK, Spoor W, Ennos RA (2000) Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84:476–486CrossRefPubMedGoogle Scholar
  44. Peter-Schmid MKI, Boller B, Kolliker R (2008) Habitat and management affect genetic structure of Festuca pratensis but not Lolium multiflorum ecotype populations. Plant Breed 127:510–517CrossRefGoogle Scholar
  45. Petit C, Thompson JD (1998) Phenotypic selection and population differentiation in relation to habitat heterogeneity in Arrhenatherum elatius (Poaceae). J Ecol 86:829–840CrossRefGoogle Scholar
  46. Petit C, Lesbros P, Ge X, Thompson JD (1997) Variation in flowering phenology and selfing rate across a contact zone between diploid and tetraploid Arrenatherum elatius (Poaceae). Heredity 79:31–40CrossRefGoogle Scholar
  47. Pfitzenmeyer CDC (1962) Arrhenatherum elatius (L.) J. & C. Presl. J Ecol 50:235–245CrossRefGoogle Scholar
  48. Prentis PJ, White EM, Radford IJ, Lowe AJ, Clarke AR (2007) Can hybridization cause local extinction: a case for demographic swamping of the Australian native Senecio pinnatifolius by the invasive Senecio madagascariensis? New Phytol 176:902–912CrossRefPubMedGoogle Scholar
  49. Puecher DI, Robredo CG, Rios RD, Rimieri P (2001) Genetic variability measures among Bromus catharticus Vahl. populations and cultivars with RAPD and AFLP markers. Euphytica 121:229–236CrossRefGoogle Scholar
  50. Renganayaki K, Read JC, Fritz AK (2001) Genetic diversity among Texas bluegrass genotypes (Poa arachnifera Torr.) revealed by AFLP and RAPD markers. Theor Appl Genet 102:1037–1045CrossRefGoogle Scholar
  51. Roldan-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breeding 6:125–134CrossRefGoogle Scholar
  52. Ronfort JL, Jenczewski E, Bataillon T, Rousset F (1998) Analysis of population structure in autotetraploid species. Genetics 150:921–930PubMedGoogle Scholar
  53. Sackville Hamilton NR (2001) Is local provenance important in habitat creation? A reply. J Appl Ecol 38:1374–1376CrossRefGoogle Scholar
  54. Saenz-Romero C, Tapia-Olivares BL (2008) Genetic variation in frost damage and seed zone delineation within an altitudinal transect of Pinus devoniana (P. michoacana) in Mexico. Silvae Genet 57:165–170Google Scholar
  55. Soengas P, Cartea E, Lema M, Velasco P (2009) Effect of regeneration procedures on the genetic integrity of Brassica oleracea accessions. Mol Breeding 23:389–395CrossRefGoogle Scholar
  56. Subudhi PK, Parami NP, Harrison SA, Materne MD, Murphy JP, Nash D (2005) An AFLP-based survey of genetic diversity among accessions of sea oats (Uniola paniculata, Poaceae) from the southeastern Atlantic and Gulf coast states of the United States. Theor Appl Genet 111:1632–1641CrossRefPubMedGoogle Scholar
  57. Sulinowski S (1965a) Variation of forms and biology of flowering in Arrhenatherum elatius (L.) P.B. Part I. Observation on the variability of some physiological and morphological features in Arrhenatherum elatius. Genet Pol 6:267–291Google Scholar
  58. Sulinowski S (1965b) Variation of forms and biology of flowering in Arrhenatherum elatius (L.) P.B. Part II. Effects of self- and cross-pollination on seed setting in Arrhenatherum elatius. Genet Pol 6:293–312Google Scholar
  59. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
  60. Teshima KM, Coop G, Przeworski M (2006) How reliable are empirical genomic scans for selective sweeps? Genome Res 16:702–712CrossRefPubMedGoogle Scholar
  61. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  62. Wood HM, Grahame JW, Humphray S, Rogers J, Butlin RK (2008) Sequence differentiation in regions identified by a genome scan for local adaptation. Mol Ecol 17:3123–3135CrossRefPubMedGoogle Scholar
  63. Wu YQ, Taliaferro CM, Bai GH, Anderson MP (2004) AFLP analysis of Cynodon dactylon (L.) Pers. var. dactylon genetic variation. Genome 47:689–696CrossRefPubMedGoogle Scholar
  64. Zhao H, Bughrara SS, Oliveira JA (2006) Genetic diversity in colonial bentgrass (Agrostis capillaris L.) revealed by EcoRI–MseI and PstIMseI AFLP markers. Genome 49:328–335CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stefan Georg Michalski
    • 1
    Email author
  • Walter Durka
    • 1
  • Anke Jentsch
    • 2
  • Juergen Kreyling
    • 3
  • Sven Pompe
    • 4
  • Oliver Schweiger
    • 1
  • Evelin Willner
    • 5
  • Carl Beierkuhnlein
    • 3
  1. 1.Department of Community Ecology (BZF)UFZ, Helmholtz Centre for Environmental ResearchHalleGermany
  2. 2.Geoecology and Physical GeographyUniversity of Koblenz-LandauLandauGermany
  3. 3.BiogeographyUniversity of BayreuthBayreuthGermany
  4. 4.Max Planck Institute for BiogeochemistryJenaGermany
  5. 5.Genebank Satellite Collections NorthLeibniz Institute of Plant Genetics and Crop Plant ResearchMalchow/PoelGermany

Personalised recommendations