Theoretical and Applied Genetics

, Volume 120, Issue 1, pp 85–91

Development, polymorphism, and cross-taxon utility of EST–SSR markers from safflower (Carthamus tinctorius L.)

  • Mark A. Chapman
  • John Hvala
  • Jason Strever
  • Marta Matvienko
  • Alexander Kozik
  • Richard W. Michelmore
  • Shunxue Tang
  • Steven J. Knapp
  • John M. Burke
Original Paper

Abstract

Due to their highly polymorphic and codominant nature, simple-sequence repeat (SSR) markers are a common choice for assaying genetic diversity and genetic mapping. In this paper, we describe the generation of an expressed-sequence tag (EST) collection for the oilseed crop safflower and the subsequent development of EST–SSR markers for the genetic analysis of safflower and related species. We assembled 40,874 reads into 19,395 unigenes, of which 4,416 (22.8%) contained at least one SSR. Primer pairs were developed and tested for 384 of these loci, resulting in a collection of 104 polymorphic markers that amplify reliably across 27 accessions (3 species) of the genus Carthamus. These markers exhibited a high level of polymorphism, with an average of 6.0 ± 0.4 alleles per locus and an average gene diversity of 0.54 ± 0.03 across Carthamus species. In terms of cross-taxon transferability, 50% of these primer pairs produced an amplicon in at least one other species in the Asteraceae, and 28% produced an amplicon in at least one species outside the safflower subfamily (i.e., lettuce, sunflower, and/or Gerbera). These markers represent a valuable resource for the genetic analysis of safflower and related species, and also have the potential to facilitate comparative map-based analyses across a broader array of taxa within the Asteraceae.

Supplementary material

122_2009_1161_MOESM1_ESM.xls (64 kb)
Supplementary material 1 (XLS 64 kb)

References

  1. Becher R (2007) EST-derived microsatellites as a rich source of molecular markers for oats. Plant Breed 126:274–278CrossRefGoogle Scholar
  2. Burke JM, Tang S, Knapp SJ, Rieseberg LH (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267PubMedGoogle Scholar
  3. Chapman MA, Burke JM (2007) DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biol 7:60CrossRefPubMedGoogle Scholar
  4. Chapman MA, Chang J-C, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755CrossRefPubMedGoogle Scholar
  5. Chase MR, Moller C, Kesseli R, Bawa KS (1996) Distant gene flow in tropical trees. Nature 383:398–399CrossRefGoogle Scholar
  6. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123CrossRefPubMedGoogle Scholar
  7. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  8. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132CrossRefPubMedGoogle Scholar
  9. Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J (2005) Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theor Appl Genet 111:456–466CrossRefPubMedGoogle Scholar
  10. Gale MD, Devos KM (1998) Plant comparative genetics after ten years. Science 282:656–658CrossRefPubMedGoogle Scholar
  11. Gentzbittel L, Mestries E, Mouzeyar S, Mazeryat F, Badaoui S, Vear F, de la Tourvieille Brouhe D, Nicolas P (1999) A composite map of expressed sequences and phenotypic traits of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet 99:218–234CrossRefGoogle Scholar
  12. Gupta M, Chyi Y-S, Romero-Stevenson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006CrossRefGoogle Scholar
  13. Hanai LR, de Campos T, Camargo LEA, Benchimol LL, de Souza AP, Melotto M, Carbonell SAM, Chioratto AF, Consoli L, Formighieri EF, Siqueira M, Tsai SM, Vieira MLC (2007) Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome 50:266–277CrossRefPubMedGoogle Scholar
  14. Heesacker A, Kishore VK, Gao WX, Tang SX, Kolkman JM, Gingle A, Matvienko M, Kozik A, Michelmore RM, Lai Z, Rieseberg LH, Knapp SJ (2008) SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor Appl Genet 117:1021–1029CrossRefPubMedGoogle Scholar
  15. Johnson WC, Jackson LE, Ochoa O, van Wijk R, Peleman J, St. Clarir DA, Michelmore RW (2000) Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor Appl Genet 101:1066–1073CrossRefGoogle Scholar
  16. Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736CrossRefGoogle Scholar
  17. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510CrossRefPubMedGoogle Scholar
  18. Kesseli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (Lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446PubMedGoogle Scholar
  19. Knowles PF (1958) Safflower. Adv Agron 10:289–323CrossRefGoogle Scholar
  20. Kozik A, Michelmore RW, Knapp SJ, Matvienko MS, Rieseberg L, Lin H, van Damme M, Lavelle D, Chevalier P, Ziegle J, Ellison P, Kolkman J, Slaubaugh MB, Livingstone K, Zhou LZ, Church S, Edberg S, Jackson L, Bradford KJ (2002) Sunflower and lettuce ESTs developed by the Compositae Genome Project (http://compgenomics.ucdavis.edu/)
  21. Lacey DJ, Wellner N, Beaudoin F, Napier JA, Shewry PR (1998) Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochem J 334:469–477PubMedGoogle Scholar
  22. Landry BS, Kesseli RV, Farrara B, Michelmore RW (1987) A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers. Genetics 116:331–337PubMedGoogle Scholar
  23. Laurent V, Devaux P, Thiel T, Viard F, Mielordt S, Touzet P, Quillet MC (2007) Comparative effectiveness of sugar beet microsatellite markers isolated from genomic libraries and GenBank ESTs to map the sugar beet genome. Theor Appl Genet 115:793–805CrossRefPubMedGoogle Scholar
  24. Levinson G, Gutman GA (1987) Slipped-strand mispairing—a major mechanism for DNA-sequence evolution. Mol Biol Evol 4:203–221PubMedGoogle Scholar
  25. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. http://lewis.eeb.uconn.edu/lewishome/software.html
  26. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize is shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084CrossRefPubMedGoogle Scholar
  27. McHale LK, Truco MJ, Kozik A, Lavelle DO, Ochoa OE, Wroblewski T, Knapp SJ, Michelmore RW (2009) Genomic architecture of disease resistance in lettuce. Theor Appl Genet 118:565–580CrossRefPubMedGoogle Scholar
  28. Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776CrossRefPubMedGoogle Scholar
  29. Panero JL, Funk VA (2008) The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol Phylogenet Evol 47:757–782CrossRefPubMedGoogle Scholar
  30. Pashley CH, Ellis JR, McCauley DE, Burke JM (2006) EST databases as a source for molecular markers: lessons from Helianthus. J Hered 97:381–388CrossRefPubMedGoogle Scholar
  31. Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming RG, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539CrossRefPubMedGoogle Scholar
  32. Peakall R, Smouse PE (2002) GenAlEx V5.04: genetic analysis in excel. Population genetic software for teaching and research. Australian National University, Canberra, Australia. http://www.anu.edu.au/BoZo/GenAlEx/
  33. Pinto LR, Oliveira KM, Ulian EC, Garcia AAF, de Souza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804CrossRefPubMedGoogle Scholar
  34. Saha MC, Cooper JD, Mian MAR, Chekhovskiy K, May GD (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113:1449–1458CrossRefPubMedGoogle Scholar
  35. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol 18:233–234CrossRefGoogle Scholar
  36. Sehgal D, Raina SN (2005) Genotyping safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica 146:67–76CrossRefGoogle Scholar
  37. Simko I (2008) Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). J Hered. doi: 10.1093/jhered/esn072
  38. Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348CrossRefPubMedGoogle Scholar
  39. Stevens PF (2006) Angiosperm phylogeny Website. Version 7. http://www.mobot.org/MOBOT/research/APweb
  40. Susanna A, Garcia-Jacas N, Hidalgo O, Vilatersana R, Garnatje T (2006) The Cardueae (Compositae) revisited: Insights from ITS, trnL-trnF, and matK nuclear and chloroplast DNA analysis. Ann Mo Bot Gard 93:150–171CrossRefGoogle Scholar
  41. Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136CrossRefPubMedGoogle Scholar
  42. Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19PubMedGoogle Scholar
  43. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1141–1452CrossRefGoogle Scholar
  44. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  45. Truco MJ, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort S, Jeuken MJW, Kesseli RV, Lindhout P, Michelmore RW, Peleman J (2007) A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). Theor Appl Genet 115:735–746CrossRefPubMedGoogle Scholar
  46. Weiss EA (1971) Castor, sesame and safflower. Barnes and Noble, Inc, New York, NYGoogle Scholar
  47. Wills DM, Burke JM (2007) QTL analysis of the early domestication of sunflower. Genetics 176:2589–2599CrossRefPubMedGoogle Scholar
  48. Wills DM, Hester ML, Liu A, Burke JM (2005) Chloroplast SSR polymorphisms in the Compositae and the mode of organellar inheritance in Helianthus annuus. Theor Appl Genet 110:941–947CrossRefPubMedGoogle Scholar
  49. Xiong LX, Liu KD, Dai XK, Xu CG, Zhang QF (1999) Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet 98:243–251CrossRefGoogle Scholar
  50. Yi GB, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130CrossRefPubMedGoogle Scholar
  51. Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, Soper J, Han F, Chu WC, Webb DM, Thompson L, Edwards KJ, Berry S, Leon AJ, Grondona M, Olungu C, Maes N, Knapp SJ (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43:367–387CrossRefGoogle Scholar
  52. Yu JK, Dake TM, Singh S, Benscher D, Li WL, Gill B, Sorrells ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mark A. Chapman
    • 1
  • John Hvala
    • 1
  • Jason Strever
    • 1
  • Marta Matvienko
    • 2
  • Alexander Kozik
    • 2
  • Richard W. Michelmore
    • 2
  • Shunxue Tang
    • 3
  • Steven J. Knapp
    • 3
  • John M. Burke
    • 1
  1. 1.Department of Plant BiologyUniversity of GeorgiaAthensUSA
  2. 2.Department of Plant Sciences, The Genome CenterUniversity of CaliforniaDavisUSA
  3. 3.Center for Applied Genomic TechnologiesUniversity of GeorgiaAthensUSA

Personalised recommendations