Theoretical and Applied Genetics

, Volume 119, Issue 5, pp 939–951 | Cite as

Development and assessment of simple PCR markers for SNP genotyping in barley

Original Paper

Abstract

Simple molecular marker assays underpin routine plant breeding and research activities in many laboratories worldwide. With the rapid growth of single nucleotide polymorphism (SNP) resources for many important crop plants, the availability of routine, low-tech marker assays for genotyping SNPs is of increased importance. In this study, we demonstrate that temperature-switch PCR (TSP) supports the rapid development of robust, allele-specific PCR markers for codominant SNP genotyping on agarose gel. A total of 87 TSP markers for assessing gene diversity in barley were developed and used to investigate the efficacy for marker development, assay reliably and genotyping accuracy. The TSP markers described provide good coverage of the barley genome, are simple to use, easy to interpret and score, and are amenable to assay automation. They provide a resource of informative SNP markers for assessing genetic relationships among individuals, populations and gene pools of cultivated barley (Hordeum vulgare L.) and its wild relative H. spontaneum K. Koch. TSP markers provide opportunities to use available SNP resources for marker-assisted breeding and plant genetic research, and to generate information that can be integrated with SNP data from different sources and studies. TSP markers are expected to provide similar advantages for any animal or plant species.

References

  1. Bonin A, Bellemain E, Bronken-Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273PubMedCrossRefGoogle Scholar
  2. Bundock PC, Cross MJ, Shapter FM, Henry RJ (2005) Robust allele-specific polymerase chain reaction markers developed for single nucleotide polymorphisms in expressed barley sequences. Theor Appl Genet 112:358–365PubMedCrossRefGoogle Scholar
  3. Chiapparino E, Lee D, Donini P (2004) Genotyping single nucleotide polymorphisms in barley by tetra-primers ARMS-PCR. Genome 47:414–420PubMedGoogle Scholar
  4. Choi IY, Hyten DL, Matukumalli L, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwang EY, Yi SI, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype and SNP analysis. Genetics 176:685–696PubMedCrossRefGoogle Scholar
  5. Dreisigacker S, Zhang P, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2004) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different mega-environments. Crop Sci 44:381–388CrossRefGoogle Scholar
  6. Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18PubMedCrossRefGoogle Scholar
  7. Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed 21:271–281CrossRefGoogle Scholar
  8. Hayden MJ, Tabone TL, Nguyen TM, Coventry S, Keiper FJ, Fox RL, Eglinton JK (2009) An informative set of SNP markers for molecular characterization of Australian barley germplasm. Crop and Pasture Science (submitted)Google Scholar
  9. Hayes P, Szucs P (2006) Disequilibrium and association in barley: thinking outside the glass. Proc Natl Acad Sci USA 103:18385–18386PubMedCrossRefGoogle Scholar
  10. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the prunus reference map. Genetics 171:1305–1309PubMedCrossRefGoogle Scholar
  11. Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2008) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371CrossRefGoogle Scholar
  12. Kaneko T, Kihara T, Ito K (1998) Genetic variation of β-amylase thermostability among varieties of barley. Hordeum vulgare L., and relation to malting quality. Plant Breed 117:425–428CrossRefGoogle Scholar
  13. Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003) A barley consensus map integrating SSR, RFLP and AFLP markers. Aust J Agric Res 54:1173–1185CrossRefGoogle Scholar
  14. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers. Plant J 4:403–410PubMedCrossRefGoogle Scholar
  15. Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics 270:24–33PubMedCrossRefGoogle Scholar
  16. Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2:235–258PubMedCrossRefGoogle Scholar
  17. Lijavezky D, Cabezas JA, Ibanez A, Rodriguez V, Martinez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424CrossRefGoogle Scholar
  18. Manly KF, Cudmore RH, Meer JN (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932PubMedCrossRefGoogle Scholar
  19. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  20. Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 9:21PubMedCrossRefGoogle Scholar
  21. Ponting RC, Drayton MC, Cogan NIO, Dobrowolski MP, Spangenberg GC, Smith KF, Forster JW (2007) SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 278:585–597PubMedCrossRefGoogle Scholar
  22. Rafalski JA (2002) Application of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  23. Rogowsky PM, Guidet FLY, Langridge P, Sheperd KW, Koebner RMD (1991) Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor Appl Genet 82:537–544CrossRefGoogle Scholar
  24. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527PubMedCrossRefGoogle Scholar
  25. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  26. Schneider K, Kulosa D, Soerensen TR, Mohring S, Heine M, Durstewitz G, Polley A, Weber E, Lein JJ, Hohmann U, Tahiro E, Weisshaar B, Schulz B, Kock G, Jung C, Ganal M (2007) Analysis of DNA polymorphisms in sugar beet (Beta vulgaris L.) and development of an SNP-based map of expressed genes. Theor Appl Genet 115:601–615PubMedCrossRefGoogle Scholar
  27. Tabone TL, Mather DE, Hayden MJ (2009) Temperature Switch PCR (TSP): amplification and detection of SNPs in a single-step, closed-tube system. BMC Genomics (under review)Google Scholar
  28. van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schnieders H, van der Poel H, van Oeveren J, Verstegen H, van Eijk MJT (2007) Complexity reduction of polymorphic sequences (CRoPS™): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2:e1172PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Matthew J. Hayden
    • 1
    • 2
    • 3
  • T. Tabone
    • 1
    • 2
    • 4
  • D. E. Mather
    • 1
    • 2
  1. 1.Molecular Plant Breeding Co-operative Research CentreGlen OsmondAustralia
  2. 2.School of Agriculture, Food and WineThe University of AdelaideGlen OsmondAustralia
  3. 3.Primary Industries Research Victoria, Victorian AgriBioscience CenterLa Trobe Research and Development ParkBundooraAustralia
  4. 4.Ludwig Institute for Cancer ResearchRoyal Melbourne HospitalParkvilleAustralia

Personalised recommendations