Theoretical and Applied Genetics

, Volume 119, Issue 4, pp 695–704 | Cite as

Physical analysis of the complex rye (Secale cereale L.) Alt4 aluminium (aluminum) tolerance locus using a whole-genome BAC library of rye cv. Blanco

  • B.-J. Shi
  • J. P. Gustafson
  • J. Button
  • J. Miyazaki
  • M. Pallotta
  • N. Gustafson
  • H. Zhou
  • P. Langridge
  • N. C. Collins
Original Paper

Abstract

Rye is a diploid crop species with many outstanding qualities, and is important as a source of new traits for wheat and triticale improvement. Rye is highly tolerant of aluminum (Al) toxicity, and possesses a complex structure at the Alt4 Al tolerance locus not found at the corresponding locus in wheat. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies, and assess the library’s suitability for investigating Al tolerance genes. The library provides 6 × genome coverage of the 8.1 Gb rye genome, has an average insert size of 131 kb, and contains only ~2% of empty or organelle-derived clones. Genetic analysis attributed the Al tolerance of Blanco to the Alt4 locus on the short arm of chromosome 7R, and revealed the presence of multiple allelic variants (haplotypes) of the Alt4 locus in the BAC library. BAC clones containing ALMT1 gene clusters from several Alt4 haplotypes were identified, and will provide useful starting points for exploring the basis for the structural variability and functional specialization of ALMT1 genes at this locus.

Supplementary material

122_2009_1080_MOESM1_ESM.pdf (897 kb)
Supplementary material 1 (PDF 897 kb)

References

  1. Akhunov ED, Akhunova AR, Dvořák J (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theor Appl Genet 111:1617–1622PubMedCrossRefGoogle Scholar
  2. Aniol A (1983) Aluminium uptake by roots of two winter wheat varieties of different tolerance to aluminium. Biochem Physiol Pflanzen 178:11–20Google Scholar
  3. Aniol A (2004) Chromosomal location of aluminium tolerance genes in rye. Plant Breed 123:132–136CrossRefGoogle Scholar
  4. Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol 26:701–705Google Scholar
  5. Ayliffe MA, Lawrence GJ, Ellis JG, Pryor AJ (1994) Heteroduplex molecules formed between allelic sequences cause nonparental RAPD bands. Nucleic Acids Res 22:1632–1636PubMedCrossRefGoogle Scholar
  6. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274:227–274PubMedCrossRefGoogle Scholar
  7. Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidium ssp. durum). Theor Appl Genet 107:931–939PubMedCrossRefGoogle Scholar
  8. Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682PubMedCrossRefGoogle Scholar
  9. Ehdaie B, Whitkus RW, Waines JG (2003) Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci 43:710–717Google Scholar
  10. Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández-Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114:249–260PubMedCrossRefGoogle Scholar
  11. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091PubMedCrossRefGoogle Scholar
  12. Gallego FJ, Calles B, Benito C (1998) Molecular markers linked to the aluminum tolerance gene Alt1 in rye (Secale cereale L.). Theor Appl Genet 97:1104–1109CrossRefGoogle Scholar
  13. Graybosch RA (2001) Uneasy unions: quality effects of rye chromatin transfers to wheat. J Cereal Sci 33:3–16CrossRefGoogle Scholar
  14. Gustafson JP, Ross K (1990) Control of alien gene expression for aluminum tolerance in wheat. Genome 33:9–12Google Scholar
  15. Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110:832–845PubMedCrossRefGoogle Scholar
  16. Hoffmann B (2008) Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Res Commun 36:269–278CrossRefGoogle Scholar
  17. Isidore E, Scherrer B, Bellec A, Budin K, Faivre-Rampant P, Waugh R, Keller B, Caboche M, Feuillet C, Chalhoub B (2005) Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region. Funct Integr Genomics 5:97–103PubMedCrossRefGoogle Scholar
  18. Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251PubMedCrossRefGoogle Scholar
  19. Kim BY, Baier AC, Somers DJ, Gustafson JP (2001) Aluminum tolerance in triticale, wheat, and rye. Euphytica 120:329–337CrossRefGoogle Scholar
  20. Kim W, Johnson JW, Baenziger PS, Lukaszewski AJ, Gaines CS (2004) Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci 44:1254–1258Google Scholar
  21. Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182PubMedCrossRefGoogle Scholar
  22. Ling P, Chen XM (2005) Construction of a hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome library for cloning genes for stripe rust resistance. Genome 48:1028–1036PubMedCrossRefGoogle Scholar
  23. Luo M-C, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389PubMedCrossRefGoogle Scholar
  24. Madej LJ (1996) Worldwide trends in rye growing and breeding. Vortr Pflanzenzücht 35:1–6Google Scholar
  25. Matos M, Camacho MV, Pérez-Flores V, Pernaute B, Pinto-Carnide O, Benito C (2005) A new aluminum tolerance gene located on rye chromosome arm 7RS. Theor Appl Genet 111:360–369PubMedCrossRefGoogle Scholar
  26. Miftahudin, Chikmawati T, Ross K, Scoles GJ, Gustafson JP (2005) Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity. Theor Appl Genet 110:906–913PubMedCrossRefGoogle Scholar
  27. Moreno-Sevilla B, Baenziger PS, Peterson CJ, Graybosch RA, McVey DV (1995) The 1BL/1RS translocation: agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci 35:1051–1055Google Scholar
  28. Moullet O, Zhang H-B, Lagudah ES (1999) Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313CrossRefGoogle Scholar
  29. Mugwira LM, Elgawhary SM, Patel KI (1976) Differential tolerances of triticale, wheat, rye, and barley to aluminum in nutrient solution. Agron J 68:782–787CrossRefGoogle Scholar
  30. Oettler G (2005) The fortune of a botanical curiosity—Triticale: past, present and future. J Agric Sci 143:329–346CrossRefGoogle Scholar
  31. Rabinovich SV (1998) Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340CrossRefGoogle Scholar
  32. Saisho D, Myoraku E, Kawasaki S, Sato K, Takeda K (2007) Construction and characterization of a bacterial artificial chromosome (BAC) library from the Japanese malting barley variety ‘Haruna Nijo’. Breed Sci 57:29–38CrossRefGoogle Scholar
  33. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653PubMedCrossRefGoogle Scholar
  34. Scherrer B, Isidore E, Klein P, Kim J, Bellec A, Chalhoub B, Keller B, Feuillet C (2005) Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell 17:361–374PubMedCrossRefGoogle Scholar
  35. Shen B, Wang DM, McIntyre CL, Liu CJ (2005) A ‘Chinese Spring’ wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions. Theor Appl Genet 111:1489–1494PubMedCrossRefGoogle Scholar
  36. Shi B-J, Collins NC, Miftahudin, Schnurbusch T, Langridge P, Gustafson JP (2007) Construction of a rye cv. Blanco BAC library, and progress towards cloning the rye Alt3 aluminium (aluminum) tolerance gene. Vortr Pflanzenzücht 71:205–209Google Scholar
  37. Šimková H, Šafář J, Suchánková P, Kovářová P, Bartoš J, Kubaláková M, Janda J, Číhalíková J, Mago R, Lelley T, Doležel J (2008) A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS). BMC Genomics 9:237PubMedCrossRefGoogle Scholar
  38. Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA 100:9055–9060PubMedCrossRefGoogle Scholar
  39. Tenhola-Roininen T, Immonen S, Tanhuanpää P (2006) Rye doubled haploids as a research and breeding tool—a practical point of view. Plant Breed 125:584–590CrossRefGoogle Scholar
  40. Tomerius A-M, Miedaner T, Geiger HH (2008) A model calculation approach towards the optimization of a standard scheme of seed-parent line development in hybrid rye breeding. Plant Breed 127:433–440CrossRefGoogle Scholar
  41. Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, Graner A, Börner A (2007) Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theor Appl Genet 114:1105–1116PubMedCrossRefGoogle Scholar
  42. Villareal RL, Bañuelos O, Mujeeb-Kazi A, Rajaram S (1998) Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica 103:195–202CrossRefGoogle Scholar
  43. Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649PubMedCrossRefGoogle Scholar
  44. Wang J, Raman H, Zhou M, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276PubMedCrossRefGoogle Scholar
  45. Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099CrossRefGoogle Scholar
  46. Zhang H-B, Zhao X, Ding X, Paterson AH, Wing RA (1995) Preparation of megabase-size DNA from plant nuclei. Plant J 7:175–184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • B.-J. Shi
    • 1
  • J. P. Gustafson
    • 2
  • J. Button
    • 1
  • J. Miyazaki
    • 1
  • M. Pallotta
    • 1
  • N. Gustafson
    • 1
  • H. Zhou
    • 1
  • P. Langridge
    • 1
  • N. C. Collins
    • 1
  1. 1.Australian Centre for Plant Functional Genomics (ACPFG), School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia
  2. 2.USDA-ARS, 206 Curtis HallUniversity of MissouriColumbiaUSA

Personalised recommendations