Theoretical and Applied Genetics

, Volume 119, Issue 2, pp 199–212 | Cite as

Genetic mapping of the apospory-specific genomic region in Pennisetum squamulatum using retrotransposon-based molecular markers

  • Heqiang Huo
  • Joann A. Conner
  • Peggy Ozias-AkinsEmail author
Original Paper


Pennisetum squamulatum reproduces by apomixis, a type of asexual reproduction through seeds. Apomixis in P. squamulatum is transmitted as a dominant Mendelian trait, and a genomic region, the apospory-specific genomic region (ASGR), is sufficient for inheritance of the trait. The ASGR is physically large (>50 Mb), highly heterochromatic, hemizygous, and recombinationally suppressed. These characteristics have hindered high-resolution genetic mapping and map-based cloning of apomixis genes. In this study, the long terminal repeat (LTR) regions of ASGR-abundant retrotransposons in the genome of P. squamulatum and ASGR-linked bacterial artificial chromosome clones were identified and sequenced for designing LTR-specific primers. Two hundred and ninety single-dose sequence specific amplified polymorphism (SSAP) markers were generated from 38 primer combinations. The SSAP markers combined with two previous ASGR-mapped markers were used for genetic linkage analysis and construction of a genetic map resulting in the formation of 27 linkage groups at LOD 10, one of which contained >60% of the SSAP markers. After removing identical markers (identical band scoring) on the largest linkage group, 46 markers were finally used for genetic mapping at LOD 10. The markers distributed across 10 different loci covering 19 cM; however, 45 markers were distributed within 9 cM. Six markers were recovered and sequenced. Five markers were successfully converted into sequence characterized amplified regions (SCARs). Segregation of SCAR markers was not always consistent with the SSAP markers of origin suggesting a greater level of error in the SSAP map resulting in an inflated map distance for the ASGR. One SCAR marker (Pst 56-1205-400) detected expression of an ASGR retrotransposon in root, anther, leaf and ovary of P. squamulatum, although sequencing of the RT-PCR product failed to find a functional open reading frame for the transcript.


Long Terminal Repeat Pearl Millet Selective Amplification Sequence Characterize Amplify Region Marker Selective Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Wayne Hanna for providing plant materials and Dr. Ye Chu, Jackie Merriman, Evelyn P. Morgan and Yajuan Zeng for technical help. This work was supported by the National Science Foundation (award no. 0115911).

Supplementary material

122_2009_1029_MOESM1_ESM.doc (46 kb)
Table S1(DOC 46 kb)


  1. Acquadro A, Portis E, Moglia A, Magurno F, Lanteri S (2006) Retrotransposon-based S-SAP as a platform for the analysis of genetic variation and linkage in globe artichoke. Genome 49:1149–1159PubMedCrossRefGoogle Scholar
  2. Ainouche ML, Baumel A, Salmon A, Yannic G (2003) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165–172CrossRefGoogle Scholar
  3. Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741PubMedCrossRefGoogle Scholar
  4. Akiyama Y, Hanna WW, Ozias-Akins P (2005) High-resolution physical mapping reveals that the apospory-specific genomic region (ASGR) in Cenchrus ciliaris is located on a heterochromatic and hemizygous region of a single chromosome. Theor Appl Genet 111:1042–1051PubMedCrossRefGoogle Scholar
  5. Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G, Romano B, Falcinelli M (2001) Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sex Plant Reprod 14:213–217CrossRefGoogle Scholar
  6. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  7. Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton, pp 5–19Google Scholar
  8. Avramova ZV (2002) Heterochromatin in animals and plants. Similarities and differences. Plant Physiol 129:40–49PubMedCrossRefGoogle Scholar
  9. Berenyi M, Gichuki T, Schmidt J, Burg K (2002) Ty1-copia retrotransposon-based S-SAP (sequence-specific amplified polymorphism) for genetic analysis of sweetpotato. Theor Appl Genet 105:862–869PubMedCrossRefGoogle Scholar
  10. Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16(Suppl):S228–S245PubMedCrossRefGoogle Scholar
  11. Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273PubMedCrossRefGoogle Scholar
  12. Bouck A, Peeler R, Arnold ML, Wessler SR (2005) Genetic mapping of species boundaries in Louisiana irises using IRRE retrotransposon display markers. Genetics 171:1289–1303PubMedCrossRefGoogle Scholar
  13. Bousios A, Saldana-Oyarzabal I, Valenzuela-Zapata AG, Wood C, Pearce SR (2007) Isolation and characterization of Ty1-copia retrotransposon sequences in the blue agave (Agave tequilana Weber var. azul) and their development as SSAP markers for phylogenetic analysis. Plant Sci 172:291–298CrossRefGoogle Scholar
  14. Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman AH, Gill BS (2002) A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol 48:767–790PubMedCrossRefGoogle Scholar
  15. Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94CrossRefGoogle Scholar
  16. Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103:18650–18655PubMedCrossRefGoogle Scholar
  17. Conner JA, Goel S, Gunawan G, Cordonnier-Pratt M, Johnson VE, Liang C, Wang H, Pratt LH, Mullet JE, DeBarry J, Yang L, Bennetzen JL, Klein PE, Ozias-Akins P (2008) Sequence analysis of BAC clones from the apospory-specific genomic region (ASGR) of Pennisetum and Cenchrus. Plant Physiol 147:1–16CrossRefGoogle Scholar
  18. Dooner HK, He L (2008) Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell 20:249–258PubMedCrossRefGoogle Scholar
  19. Dujardin M, Hanna W (1989) Crossability of pearl millet with wild Pennisetum species. Crop Sci 29:77–80Google Scholar
  20. Ellis TH, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19PubMedGoogle Scholar
  21. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644PubMedCrossRefGoogle Scholar
  22. Flavell AJ, Pearce SR, Heslop-Harrison JS, Kumar A (1997) The evolution of Ty1-copia group retrotransposons in eukaryote genomes. Genetica 100:185–195PubMedCrossRefGoogle Scholar
  23. Goel S, Chen Z, Conner JA, Akiyama Y, Hanna WW, Ozias-Akins P (2003) Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163:1069–1082PubMedGoogle Scholar
  24. Goel S, Chen Z, Akiyama Y, Conner JA, Basu M, Gualtieri G, Hanna WW, Ozias-Akins P (2006) Comparative physical mapping of the apospory-specific genomic region in two apomictic grasses: Pennisetum squamulatum and Cenchrus ciliaris. Genetics 173:389–400PubMedCrossRefGoogle Scholar
  25. Grimanelli D, Leblanc O, De Leon DG, Savidan Y (1995) Apomixis expression in maize-Tripsacum hybrid derivatives and the implications regarding its control and potential for manipulation. Apomixis Newsl 8:35–37Google Scholar
  26. Grimanelli D, Leblanc O, Espinosa E, Perotti E, De Leon DG, Savidan Y (1998) Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80:33–39PubMedCrossRefGoogle Scholar
  27. Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001) Developmental genetics of gametophytic apomixis. Trends Genet 17:597–604PubMedCrossRefGoogle Scholar
  28. Grossniklaus U, Nogler GA, van Dijk PJ (2001) How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell 13:1491–1498PubMedCrossRefGoogle Scholar
  29. Jessup RW, Burson BL, Burow GB, Wang YW, Chang C, Li Z, Paterson AH, Hussey MA (2002) Disomic inheritance, suppressed recombination, and allelic interactions govern apospory in buffelgrass as revealed by genome mapping. Crop Sci 42:1688–1694CrossRefGoogle Scholar
  30. Koltunow AM, Bicknell RA, Chaudhury AM (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol 108:1345–1352PubMedGoogle Scholar
  31. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532PubMedCrossRefGoogle Scholar
  32. Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134PubMedCrossRefGoogle Scholar
  33. Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45:513–519PubMedCrossRefGoogle Scholar
  34. Lightbourn GJ, Jelesko JG, Veilleux RE (2007) Retrotransposon-based markers from potato monoploids used in somatic hybridization. Genome 50:492–501PubMedCrossRefGoogle Scholar
  35. Liu Z, Wang Y, Shen Y, Guo W, Hao S, Liu B (2004) Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia. Plant Mol Biol 54:571–582PubMedCrossRefGoogle Scholar
  36. Lou Q, Chen J (2007) Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 50:802–810PubMedCrossRefGoogle Scholar
  37. Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauser L, Stougaard J (2005) LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44:372–381PubMedCrossRefGoogle Scholar
  38. Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334PubMedCrossRefGoogle Scholar
  39. Meeûs T, Prugnolle F, Agnew P (2007) Asexual reproduction: genetics and evolutionary aspects. Cell Mol Life Sci 64:1355–1367PubMedCrossRefGoogle Scholar
  40. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518Google Scholar
  41. Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390PubMedGoogle Scholar
  42. Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214CrossRefGoogle Scholar
  43. Ozias-Akins P, Lubbers EL, Hanna WW, McNay JW (1993) Transmission of the apomictic mode of reproduction in Pennisetum: Co-inheritance of the trait and molecular markers. Theor Appl Genet 85:632–638CrossRefGoogle Scholar
  44. Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132PubMedCrossRefGoogle Scholar
  45. Ozias-Akins P, Akiyama Y, Hanna WW (2003) Molecular characterization of the genomic region linked with apomixis in Pennisetum/Cenchrus. Funct Integr Genomics 3:94–104PubMedCrossRefGoogle Scholar
  46. Panstruga R, Buschges R, Piffanelli P, Schulze-Lefert P (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26:1056–1062PubMedCrossRefGoogle Scholar
  47. Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis TH, Flavell AJ (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19:711–717PubMedCrossRefGoogle Scholar
  48. Pearce SR, Knox M, Ellis TH, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907PubMedCrossRefGoogle Scholar
  49. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859PubMedCrossRefGoogle Scholar
  50. Porceddu A, Albertini E, Barcaccia G, Falcinelli M (2002a) Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two-way pseudotestcross strategy based on AFLP and SAMPL markers. Theor Appl Genet 104:273–280PubMedCrossRefGoogle Scholar
  51. Porceddu A, Albertini E, Barcaccia G, Marconi G, Bertoli FB, Veronesi F (2002b) Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Genet Genomics 267:107–114PubMedCrossRefGoogle Scholar
  52. Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics 271:91–97PubMedCrossRefGoogle Scholar
  53. Remington DL, Whetten RW, Liu BH, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292PubMedCrossRefGoogle Scholar
  54. Roche D, Conner J, Budiman A, Frisch D, Wing R, Hanna W, Ozias-Akins P (2002) Construction of BAC libraries from two apomictic grasses to study the microcolinearity of their apospory-specific genomic regions. Theor Appl Genet 104:804–812PubMedCrossRefGoogle Scholar
  55. Sambrook J, Russell DW (2001) Molecular cloning, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  56. Sant VJ, Sainani MN, Sami-Subbu R, Ranjekar PK, Gupta VS (2000) Ty1-copia retrotransposon-like elements in chickpea genome: their identification, distribution and use for diversity analysis. Gene 257:157–166PubMedCrossRefGoogle Scholar
  57. Sanz AM, Gonzalez SG, Syed NH, Suso MJ, Saldana CC, Flavell AJ (2007) Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Genet Genomics 278:433–441PubMedCrossRefGoogle Scholar
  58. Schneider A, Walker SA, Poyser S, Sagan M, Ellis TH, Downie JA (1999) Genetic mapping and functional analysis of a nodulation-defective mutant (sym19) of pea (Pisum sativum L.). Mol Gen Genet 262:1–11PubMedCrossRefGoogle Scholar
  59. Schulman AH, Flavell AJ, Ellis ΤΗN (2004) The application of LTR retrotransposons as molecular markers in plants. In: Miller WJ, Capy P (eds) Mobile genetic elements: protocols and genomic applications. Humana Press, Totowa, pp 145–173CrossRefGoogle Scholar
  60. Scott RJ (2007) Polyspermy in apomictic Crataegus: yes and no. New Phytol 173:227–229PubMedCrossRefGoogle Scholar
  61. Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187CrossRefGoogle Scholar
  62. Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development—virgin births in farmers’ fields? Nat Biotechnol 22:687–691PubMedCrossRefGoogle Scholar
  63. Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705PubMedCrossRefGoogle Scholar
  64. Syed NH, Sureshsundar S, Wilkinson MJ, Bhau BS, Cavalcanti JJ, Flavell AJ (2005) Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theor Appl Genet 110:1195–1202PubMedCrossRefGoogle Scholar
  65. Syed NH, Sorensen AP, Antonise R, van de Wiel C, van der Linden CG, vant Westende W, Hooftman DA, den Nijs HC, Flavell AJ (2006) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet 112:517–527PubMedCrossRefGoogle Scholar
  66. Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831PubMedCrossRefGoogle Scholar
  67. The Rice Chromosome 10 Sequencing Consortium (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569CrossRefGoogle Scholar
  68. van Dijk PJ, van Damme J (2000) Apomixis technology and the paradox of sex. Trends Plant Sci 5:81–84PubMedCrossRefGoogle Scholar
  69. van Dijk PJ, Tas IC, Falque M, Bakx-Schotman T (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83:715–721PubMedCrossRefGoogle Scholar
  70. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps, 3rd edn. Plant Research International, WageningenGoogle Scholar
  71. Venturi S, Dondini L, Donini P, Sansavini S (2006) Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet 112:440–444PubMedCrossRefGoogle Scholar
  72. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  73. Voytas DF, Cummings MP, Koniczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128PubMedCrossRefGoogle Scholar
  74. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694PubMedCrossRefGoogle Scholar
  75. Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300CrossRefGoogle Scholar
  76. Young BA, Sherwood RT, Bashaw EC (1979) Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot 57:1668–1672CrossRefGoogle Scholar
  77. Yu GX, Wise RP (2000) An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome 43:736–749PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Heqiang Huo
    • 1
  • Joann A. Conner
    • 1
  • Peggy Ozias-Akins
    • 1
    Email author
  1. 1.Department of HorticultureUniversity of Georgia Tifton CampusTiftonUSA

Personalised recommendations