Theoretical and Applied Genetics

, Volume 118, Issue 8, pp 1465–1476 | Cite as

Genes and traits associated with chromosome 2H and 5H regions controlling sensitivity of reproductive tissues to frost in barley

  • Andrew Chen
  • Jason Reinheimer
  • Anita Brûlé-Babel
  • Ute Baumann
  • Margaret Pallotta
  • Geoffrey B. Fincher
  • Nicholas C. Collins
Original Paper


Frost at flowering can cause significant damage to cereal crops. QTL for low temperature tolerance in reproductive tissues (LTR tolerance) were previously described on barley 2HL and 5HL chromosome arms. With the aim of identifying potential LTR tolerance mechanisms, barley Amagi Nijo × WI2585 and Haruna Nijo × Galleon populations were examined for flowering time and spike morphology traits associated with the LTR tolerance loci. In spring-type progeny of both crosses, winter alleles at the Vrn-H1 vernalization response locus on 5H were linked in coupling with LTR tolerance and were unexpectedly associated with earlier flowering. In contrast, tolerance on 2HL was coupled with late flowering alleles at a locus we named Flt-2L. Both chromosome regions influenced chasmogamy/cleistogamy (open/closed florets), although tolerance was associated with cleistogamy at the 2HL locus and chasmogamy at the 5HL locus. LTR tolerance controlled by both loci was accompanied by shorter spikes, which were due to fewer florets per spike on 5HL, but shorter rachis internodes on 2HL. The Eps-2S locus also segregated in both crosses and influenced spike length and flowering time but not LTR tolerance. Thus, none of the traits was consistently correlated with LTR tolerance, suggesting that the tolerance may be due to some other visible trait or an intrinsic (biochemical) property. Winter alleles at the Vrn-H1 locus and short rachis internodes may be of potential use in barley breeding, as markers for selection of LTR tolerance at 5HL and 2HL loci, respectively.


Spike Length Cleave Amplify Polymorphic Sequence Marker Spring Type Anther Extrusion Winter Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the Grains Research and Development Corporation, the Australian Research Council, the University of Adelaide and the South Australian government for funding. We thank Peter Langridge for seeds and the molecular marker data set of the Amagi Nijo × WI2585 F1-derived doubled-haploid population, Jason Eglinton and Stewart Coventry for access to FIS data and helpful discussions and Paul Gooding for technical assistance.

Supplementary material

122_2009_995_MOESM1_ESM.pdf (222 kb)
PDF 222 kb


  1. Båga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7:53–68PubMedCrossRefGoogle Scholar
  2. Chen A, Brûlé-Babel A, Baumann U, Collins NC (2009) Structure-function analysis of the barley genome: the gene-rich region of chromosome 2HL. Funct Integr Genomics 9:67–79PubMedCrossRefGoogle Scholar
  3. Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA, O’Sullivan DM (2007) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115:993–1001PubMedCrossRefGoogle Scholar
  4. Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szűcs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424CrossRefGoogle Scholar
  5. Cromey MG, Wright DSC, Boddington HJ (1998) Effects of frost during grain filling on wheat yield and grain structure. N Z J Crop Hortic Sci 26:279–290Google Scholar
  6. Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan LL, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353PubMedCrossRefGoogle Scholar
  7. Dubcovsky J, Chen CL, Yan LL (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breed 15:395–407CrossRefGoogle Scholar
  8. Dubcovsky J, Loukoianov A, Fu DL, Valarik M, Sanchez A, Yan LL (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480PubMedCrossRefGoogle Scholar
  9. Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Tóth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680PubMedCrossRefGoogle Scholar
  10. Francia E, Barabaschi D, Tondelli A, Laidò G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091PubMedCrossRefGoogle Scholar
  11. Franklin KA, Davis SJ, Stoddart WM, Vierstra RD, Whitelam GC (2003) Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. Plant Cell 15:1981–1989PubMedCrossRefGoogle Scholar
  12. Fu DL, Szűcs P, Yan LL, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65PubMedCrossRefGoogle Scholar
  13. Fujita M, Kawada N, Tahir M (1992) Relationship between cold resistance, heading traits and ear primordia development of wheat cultivars. Euphytica 64:123–130Google Scholar
  14. Fuller MP, Fuller AM, Kaniouras S, Christophers J, Fredericks T (2007) The freezing characteristics of wheat at ear emergence. Eur J Agron 26:435–441CrossRefGoogle Scholar
  15. Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost-resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179CrossRefGoogle Scholar
  16. Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B (1993) Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winter hardiness. Genome 36:66–71PubMedCrossRefGoogle Scholar
  17. Honda I, Turuspekov Y, Mano Y, Sameri M, Komatsuda T and Watanabe Y (2003) Genetic analysis of opened and closed type of flowering. Plant and Animal Genomes XI Conference, San DiegoGoogle Scholar
  18. Honda I, Turuspekov Y, Komatsuda T, Watanabe Y (2005) Morphological and physiological analysis of cleistogamy in barley (Hordeum vulgare). Physiol Plant 124:524–531CrossRefGoogle Scholar
  19. Hori K, Sato K, Nankaku N, Takeda K (2005) QTL analysis in recombinant chromosome substitution lines and doubled haploid lines derived from a cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Mol Breed 16:295–311CrossRefGoogle Scholar
  20. Karakousis A, Barr AR, Kretschmer JM, Manning S, Logue SJ, Roumeliotis S, Collins HM, Chalmers KJ, Li CD, Lance RCM, Langridge P (2003) Mapping and QTL analysis of the barley population Galleon × Haruna Nijo. Aust J Agric Res 54:1131–1135CrossRefGoogle Scholar
  21. Knox AK, Li CX, Vágújfalvi A, Galilba G, Stockinger EJ, Dubcovsky J (2008) Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Mol Biol 67:257–270PubMedCrossRefGoogle Scholar
  22. Kóti K, Karsai I, Szűcs P, Horváth C, Mészáros K, Kiss GB, Bedő Z, Hayes PM (2006) Validation of the two-gene epistatic model for vernalization response in a winter × spring barley cross. Euphytica 152:17–24CrossRefGoogle Scholar
  23. Kurauchi N, Makino T, Hirose S (1994) Inheritance of cleistogamy–chasmogamy in barley. Barley Genet Newsl 23:19Google Scholar
  24. Laurie DA, Pratchett N, Bezant JH, Snape JW (1994) Genetic analysis of a photoperiod response gene on the short arm of chromosome 2(2H) of Hordeum vulgare (barley). Heredity 72:619–627CrossRefGoogle Scholar
  25. Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of 5 major genes and 8 quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585PubMedGoogle Scholar
  26. Limin AE, Fowler DB (2006) Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta 224:360–366PubMedCrossRefGoogle Scholar
  27. Limin A, Corey A, Hayes P, Fowler DB (2007) Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development. Planta 226:139–146PubMedCrossRefGoogle Scholar
  28. Livingston JE, Swinbank JC (1950) Some factors influencing the injury to winter wheat heads by low temperatures. Agron J 42:153–157Google Scholar
  29. Loukoianov A, Yan LL, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138:2364–2373PubMedCrossRefGoogle Scholar
  30. Lundqvist U, Lundqvist A (1998) Intermedium mutants in barley (Hordeum vulgare L.): diversity, interactions and plant breeding value. J Appl Genet 39:85–96Google Scholar
  31. Mahfoozi S, Limin AE, Ahakpaz F, Fowler DB (2006) Phenological development and expression of freezing resistance in spring and winter wheat under field conditions in north-west Iran. Field Crop Res 97:182–187CrossRefGoogle Scholar
  32. Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932PubMedCrossRefGoogle Scholar
  33. Marcellos H, Single WV (1984) Frost injury in wheat ears after ear emergence. Aust J Plant Physiol 11:7–15CrossRefGoogle Scholar
  34. Monte E, Alonso JM, Ecker JR, Zhang YL, Li X, Young J, Austin-Phillips S, Quail PH (2003) Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell 15:1962–1980PubMedCrossRefGoogle Scholar
  35. Pallotta MA, Asayama S, Reinheimer JM, Davies PA, Barr AR, Jefferies SP, Chalmers KJ, Lewis J, Collins HM, Roumeliotis S, Logue SJ, Coventry SJ, Lance RCM, Karakousis A, Lim P, Verbyla AP, Eckermann PJ (2003) Mapping and QTL analysis of the barley population Amagi Nijo × WI2585. Aust J Agric Res 54:1141–1144CrossRefGoogle Scholar
  36. Paulsen GM, Heyne EG (1983) Grain production of winter wheat after spring freeze injury. Agron J 75:705–707CrossRefGoogle Scholar
  37. Prášil IT, Prášilová P, Pánková K (2004) Relationships among vernalization, shoot apex development and frost tolerance in wheat. Ann Bot 94:413–418PubMedCrossRefGoogle Scholar
  38. Rebbeck M, Lynch C, Hayman PT, Sadras VO (2007) Delving of sandy surfaced soils reduces frost damage in wheat crops. Aust J Agric Res 58:105–112Google Scholar
  39. Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 109:1267–1274PubMedCrossRefGoogle Scholar
  40. Sameri M, Takeda K, Komatsuda T (2006) Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental- and occidental-type barley cultivars. Breed Sci 56:243–252CrossRefGoogle Scholar
  41. Shitsukawa N, Ikari C, Shimada S, Kitagawa S, Sakamoto K, Saito H, Ryuto H, Fukunishi N, Abe T, Takumi S, Nasuda S, Murai K (2007) The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82:167–170PubMedCrossRefGoogle Scholar
  42. Single WV (1966) Studies on frost injury to wheat. 3. Screening of varieties for resistance to ear and stem frosting. Aust J Agric Res 17:601–610CrossRefGoogle Scholar
  43. Single WV (1985) Frost injury and the physiology of the wheat plant—Farrer memorial oration, 1984. J Aust Inst Agr Sci 51:128–134Google Scholar
  44. Single WV, Marcellos H (1974) Studies on frost injury to wheat. 4. Freezing of ears after emergence from the leaf sheath. Aust J Agric Res 25:679–686CrossRefGoogle Scholar
  45. Skinner J, Szűcs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842PubMedCrossRefGoogle Scholar
  46. Stein N, Prasad M, Scholz U, Thiel T, Zhang HN, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1, 000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  47. Szűcs P, Karsai I, von Zitzewitz J, Mészáros K, Cooper LLD, Gu YQ, Chen THH, Hayes PM, Skinner JS (2006) Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor Appl Genet 112:1277–1285PubMedCrossRefGoogle Scholar
  48. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454PubMedCrossRefGoogle Scholar
  49. Tóth B, Galiba G, Fehér E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514PubMedCrossRefGoogle Scholar
  50. Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405PubMedCrossRefGoogle Scholar
  51. Tuberosa R, Galiba G, Sanguineti MC, Noli E, Sutka J (1997) Identification of QTL influencing freezing tolerance in barley. Acta Agron Hung 45:413–417Google Scholar
  52. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034PubMedCrossRefGoogle Scholar
  53. Turuspekov Y, Mano Y, Honda I, Kawada N, Watanabe Y, Komatsuda T (2004) Identification and mapping of cleistogamy genes in barley. Theor Appl Genet 109:480–487PubMedCrossRefGoogle Scholar
  54. Turuspekov Y, Kawada N, Honda I, Watanabe Y, Komatsuda T (2005) Identification and mapping of a QTL for rachis internode length associated with cleistogamy in barley. Plant Breed 124:542–545CrossRefGoogle Scholar
  55. Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genomics 269:60–67PubMedGoogle Scholar
  56. von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231CrossRefGoogle Scholar
  57. von Zitzewitz J, Szűcs P, Dubcovsky J, Yan LL, Francia E, Pecchioni N, Casas A, Chen THH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467CrossRefGoogle Scholar
  58. Whaley JM, Kirby EJM, Spink JH, Foulkes MJ, Sparkes DL (2004) Frost damage to winter wheat in the UK: the effect of plant population density. Eur J Agron 21:105–115CrossRefGoogle Scholar
  59. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268PubMedCrossRefGoogle Scholar
  60. Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andrew Chen
    • 1
  • Jason Reinheimer
    • 1
    • 2
  • Anita Brûlé-Babel
    • 3
  • Ute Baumann
    • 1
  • Margaret Pallotta
    • 1
  • Geoffrey B. Fincher
    • 1
  • Nicholas C. Collins
    • 1
  1. 1.Australian Centre for Plant Functional Genomics (ACPFG), School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia
  2. 2.Plant Breeding UnitAustralian Grain TechnologiesRoseworthyAustralia
  3. 3.Department of Plant ScienceUniversity of ManitobaWinnipegCanada

Personalised recommendations