Theoretical and Applied Genetics

, Volume 118, Issue 7, pp 1295–1307 | Cite as

Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection

  • G. Robledo
  • G. I. Lavia
  • G. Seijo
Original Paper


Section Arachis of the homonymous genus includes 29 wild diploid species and two allotetraploids (A. monticola and the domesticated peanut, A. hypogaea L.). Although, three different genomes (A, B and D) have been proposed for diploid species with = 10, they are still not well characterized. Moreover, neither the relationships among species within each genome group nor between diploids and tetraploids (AABB) are completely resolved. To tackle these issues, particularly within the A genome, in this study the rRNA genes (5S and 18S–26S) and heterochromatic bands were physically mapped using fluorescent in situ hybridization (FISH) in 13 species of Arachis. These molecular cytogenetic landmarks have allowed individual identification of a set of chromosomes and were used to construct detailed FISH-based karyotypes for each species. The bulk of the chromosome markers mapped revealed that, although the A genome species have a common karyotype structure, the species can be arranged in three groups (La Plata River Basin, Chiquitano, and Pantanal) on the basis of the variability observed in the heterochromatin and 18S–26S rRNA loci. Notably, these groups are consistent with the geographical co-distribution of the species. This coincidence is discussed on the basis of the particular reproductive traits of the species such as autogamy and geocarpy. Combined with geographic distribution of the taxa, the cytogenetic data provide evidence that A. duranensis is the most probable A genome ancestor of tetraploid species. It is expected that the groups of diploid species established, and their relation with the cultigen, may aid to rationally select wild species with agronomic traits desirable for peanut breeding programs.


Arachis rDNA Locus rDNA Site Genome Species Karyotype Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)PIP5807, and Agencia Nacional de Promoción Científica y Técnica, PICT 2005 Nº34458, Argentina.


  1. Ansari HA, Ellison NW, Williams WM (2008) Molecular and cytogenetic evidence for an allotetraploid origin of Trifolium dubium (Leguminosae). Chromosoma 117:159–167PubMedCrossRefGoogle Scholar
  2. Appels R, Moran LB, Gustafson JP (1986) The structure of DNA from rye (Secale cereale) NOR R1 locus and its behaviour in wheat backgrounds. Can J Genet Cytol 28:673–685Google Scholar
  3. Burow MD, Simpson CE, Starr JL, Paterson A (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): Broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837PubMedGoogle Scholar
  4. Cerbah M, Souza-Chies T, Jubier MF, Lejeune B, Siljak-Yakovlev S (1998) Molecular phylogeny of the genus Hypochaeris using internal transcribed spacers of nuclear rDNA: inference for chromosomal evolution. Mol Biol Evol 15(3):345–354PubMedGoogle Scholar
  5. Chung MC, Lee YI, Cheng YY, Chou YJ, Lu CF (2008) Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor Appl Genet 116:745–753PubMedCrossRefGoogle Scholar
  6. Custodio AR, Peñaloza APS, Valls JFM (2005) Further cytogenetic information on Arachis stenosperma (Leguminosae). Cytologia 70:331–335CrossRefGoogle Scholar
  7. Dwivedi SI, Bertioli DJ, Crouch JH, Valls JFM, Upadhyaya HD, Favero A, Moretzsohn M, Paterson AH (2007) Peanut genetics and genomics: toward marker-assisted genetic enhancement in peanut (Arachis hypogaea L). In: Kole C (ed) Oilseeds series: genome mapping, molecular breeding in plants oilseeds series: genome mapping and molecular breeding in plants, vol 2. Springer, Berlin, pp 115–151Google Scholar
  8. Fávero AP, Simpson CE, Valls JFM, Yuksel B (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaensis, A. duranensis, and A. hypogaea. Crop Sci 46:1546–1552CrossRefGoogle Scholar
  9. Fernández A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:187–220Google Scholar
  10. Gimenes MA, Lopes CR, Galgaro ML, Valls JFM, Kochert G (2002) RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica 123:421–429CrossRefGoogle Scholar
  11. Gregory WC, Gregory MP (1976) Groundnut. Arachis hypogaea (Leguminosae-Papilionatae). In: Simmonds NW (ed) Evolution of crop plants. Longman Group Ltd, London, pp 151–154Google Scholar
  12. Gregory MP, Gregory WC (1979) Exotic germoplasm of Arachis L. interspecific hybrids. J Hered 70:185–193Google Scholar
  13. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041Google Scholar
  14. Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491–497PubMedCrossRefGoogle Scholar
  15. Husted L (1933) Cytological studies on the peanut, Arachis I. Chromosome number and morphology. Cytologia 5:109–117Google Scholar
  16. Isleib TG, Holbrook CC, Gorbet DW (2001) Use of Arachis spp. plant introductions in peanut cultivar development. Peanut Sci 28:96–113Google Scholar
  17. Jiang J, Gill BS (1994) New 18S–26S ribosomal gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103:179–185PubMedCrossRefGoogle Scholar
  18. Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570CrossRefGoogle Scholar
  19. Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186Google Scholar
  20. Krapovickas A, Rigoni VA (1951) Estudios citológicos en el genero Arachis. Rev Invest Agric 5:289–294Google Scholar
  21. Lavia GI (1996) Estudios cromosómicos en Arachis (Leguminosae). Bonplandia 9:111–120Google Scholar
  22. Lavia GI (1998) Karyotypes of Arachis palustris and A. praecox (section Arachis), two species with basic chromosome number x = 9. Cytologia 63:177–181Google Scholar
  23. Lavia GI (2000) Chromosome studies of wild Arachis (Leguminosae). Caryologia 53:177–181Google Scholar
  24. Lavia GI, Fernández A, Simpson CE, Seijo G (2001) Meiotic analysis in wild diploid Arachis species. Cytologia 66:293–298Google Scholar
  25. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  26. Li X, Guo R, Pedersen C, Hayman D, Langridge P (1997) Physical localization of rRNA genes by two-colour fluorescent in-situ hybridization and sequence analysis of the 5S rRNA gene in Phalaris coerulescens. Hereditas 126:289–294PubMedCrossRefGoogle Scholar
  27. Lim KY, Matyasek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258PubMedCrossRefGoogle Scholar
  28. Liu ZL, Zhang D, Hong DY, Wang XR (2003) Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theor Appl Genet 106:198–204PubMedGoogle Scholar
  29. Martins C, Galetti PM Jr (2001) Two 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes? Genetica 111:439–446PubMedCrossRefGoogle Scholar
  30. Milla SR, Isleib TG, Stalker HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–11PubMedCrossRefGoogle Scholar
  31. Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11CrossRefGoogle Scholar
  32. Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236CrossRefGoogle Scholar
  33. Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S–26S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233PubMedCrossRefGoogle Scholar
  34. Murata M, Heslop-Harrison J-S, Motoyoshi F (1997) Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant J 12:31–37PubMedCrossRefGoogle Scholar
  35. Nakamura R, Kitamura S, Inoue M, Ohmido N, Fukui K (2001) Karyotype analysis of Nicotiana kawakamii Y. Ohashi using DAPI banding and rDNA FISH. Theor Appl Genet 102:810–814CrossRefGoogle Scholar
  36. Peñaloza A, Valls JFM (2005) Chromosome number and satellited chromosome morphology of eleven species of Arachis (Leguminosae). Bonplandia 14:65–72Google Scholar
  37. Pires JC, Lim KY, Kovarik A, Matyasek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE (2004) Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022–1035CrossRefGoogle Scholar
  38. Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245PubMedCrossRefGoogle Scholar
  39. Popolizio E (1982) Geomorphology of the Argentine Northeast. Water Int 7:162–177CrossRefGoogle Scholar
  40. Raina SN, Mukai Y (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59CrossRefGoogle Scholar
  41. Raina SN, Mukai Y, Kawaguchi K, Goel S, Jain A (2001a) Physical mapping of 18S-5.8S-26S and 5S ribosomal RNA gene families in three important vetches (Vicia species) and their allied taxa constituting three species complexes. Theor Appl Genet 103:839–845CrossRefGoogle Scholar
  42. Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001b) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772PubMedCrossRefGoogle Scholar
  43. Robledo G, Seijo JG (2008) Characterization of Arachis D genome by FISH chromosome markers and total genome DNA hybridization. Genet Mol Biol 31:717–724CrossRefGoogle Scholar
  44. Rodríguez V, Seijo JG, Lavia GI, Fernández A, Simpson CE (2004) Meiotic behaviour in wild diploid Arachis (Leguminosae) species. Cytologia 69:209–214CrossRefGoogle Scholar
  45. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148CrossRefGoogle Scholar
  46. Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297CrossRefGoogle Scholar
  47. Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromosomes Today 9:61–74Google Scholar
  48. Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of 5S and 18S–25S rRNA genes evidences that Arachis duranensis and A. ipaensis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303CrossRefGoogle Scholar
  49. Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea—Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971CrossRefGoogle Scholar
  50. Simpson CE (2001) Use of wild Arachis species/introgression of genes into A. hypogaea L. Peanut Sci 28:114–116Google Scholar
  51. Singh AK (1986) Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. Part 8. Synthetic amphidiploids and their importance in interspecific breeding. Theor Appl Genet 72:433–439CrossRefGoogle Scholar
  52. Singh AK (1988) Putative genome donors of Arachis hypogaea (Fabaceae), evidence from crosses with synthetic amphidiploid. Plant Syst Evol 160:143–151CrossRefGoogle Scholar
  53. Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. 2. Chromosome complements of species of section Arachis. Theor Appl Genet 61:305–314Google Scholar
  54. Singh AK, Moss JP (1984) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. 5. Genome analysis in section Arachis and its implications in gene transfer. Theor Appl Genet 68:355–364CrossRefGoogle Scholar
  55. Singh AK, Smartt J (1998) The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited. Genet Resour Crop Evol 45:113–118CrossRefGoogle Scholar
  56. Smartt J, Gregory WC (1967) Interspecific cross compatibility relationships between the cultivated peanut Arachis hypogaea L and other species of the genus Arachis. Oléaginuex 22:455–459Google Scholar
  57. Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675CrossRefGoogle Scholar
  58. Spichiger R, Calenge C, Bise B (2004) Geographical zonation in the Neotropics of tree species characteristic of the ParaguayParaná Basin. J Biogeogr 31:1489–1501CrossRefGoogle Scholar
  59. Stalker HT (1991) A new species section Arachis of peanuts with D genome. Am J Bot 78:630–637CrossRefGoogle Scholar
  60. Stalker HT, Wynne JC (1979) Cytology of interspecific hybrids in section Arachis of peanuts. Peanut Sci 6:110–114CrossRefGoogle Scholar
  61. Suja JA, Gébrane-Younès J, Géraud G, Hernandez-Verdun D (1997) Relative distribution of rDNA and proteins of the RNA polymerase I transcription machinery at chromosomal NORs. Chromosoma 105:459–469PubMedCrossRefGoogle Scholar
  62. Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237PubMedCrossRefGoogle Scholar
  63. Valls JFM, Simpson CE (2005) New species of Arachis from Brazil, Paraguay, and Bolivia. Bonplandia 14:35–64Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Instituto de Botánica del NordesteCorrientesArgentina
  2. 2.Facultad de Ciencias ExactasNaturales y Agrimensura (UNNE)CorrientesArgentina

Personalised recommendations