Theoretical and Applied Genetics

, Volume 118, Issue 3, pp 581–590 | Cite as

Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.)

  • Lijun Zhou
  • Liangming Chen
  • Ling Jiang
  • Wenwei Zhang
  • Linglong Liu
  • Xi Liu
  • Zhigang Zhao
  • Shijia Liu
  • Lujun Zhang
  • Jiankang Wang
  • Jianmin Wan
Original Paper

Abstracts

Chalkiness of rice grain is an important quality component of rice, as it has a profound influence on eating and milling qualities. We has determined the inheritance of percentage of grain with chalkiness (PGWC) using a set of chromosome segment substitution lines, made from a cross between cv. PA64s and cv. 9311. Two loci controlling PGWC, designated as qPGWC-6 and qPGWC-7, were located on, respectively, chromosomes 6 and 7. Comparisons were made between C-51 (a CSSL harbouring qPGWC-7 and having a chalky endosperm) and the recurrent parent 9311 (translucent endosperm) to characterize the physical and chemical differences between translucent and chalky endosperm. Unlike the translucent endosperm, the chalky endosperm contains loosely packed starch granules, and there were significant difference between C-51 and 9311 for amylopectin structure and degree of crystallinity, but not for either amylose content or starch viscosity. Segregation analysis of the F2 population from the cross between C-51 and 9311 showed PGWC is a semi-dominant trait, controlled by single nuclear gene. A large F2 population was constructed from the cross C51 × 9311, and used for the fine mapping of qPGWC-7, which was located to a 44-kb DNA fragment, containing thirteen predicted genes. This result provides a springboard for the map-based cloning of qPGWC-7 and allowed for marker-assisted selection for endosperm texture.

References

  1. American Association of Cereal Chemists (2000) Approved methods for the AACC, 10th edn. Method 61-01 and Method 61-02. The Association, St. PaulGoogle Scholar
  2. Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu ZH, Ronald PC, Hamington SE, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274PubMedGoogle Scholar
  3. Cheetham NWH, Tao LP (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36:277–284CrossRefGoogle Scholar
  4. Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553–567CrossRefGoogle Scholar
  5. Cheng FM, Zhong LJ, Wang F, Zhang GP (2005) Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem 90:39–46CrossRefGoogle Scholar
  6. Del Rosario AR, Briones VP, Vidal AJ, Juliano BO (1968) Composition and endosperm structure of developing and mature rice kernel. Cereal Chem 45:225–235Google Scholar
  7. Dellapporta SL, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  8. Doi K, Izawa T, Fuse T, Yamalouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independent of Hd1. Genes Dev 18:926–936PubMedCrossRefGoogle Scholar
  9. Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breed Sci 55:65–73CrossRefGoogle Scholar
  10. Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park JH, Jane JL, Miyao A, Hirochika H, Nakamura Y (2007) Characterization of SSIIIa-deficient mutants of rice: The function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023PubMedCrossRefGoogle Scholar
  11. Fujita S, Yamamoto H, Sugimoto Y, Morita N, Yamamori M (1998) Thermal and crystalline properties of waxy wheat (Triticum aestivum L.) starch. J Cereal Sci 27:1–5CrossRefGoogle Scholar
  12. He P, Li SG, Li JS, Ma YQ, Qian Q, Wang WM, Chen Y, Zhu LH (1998) Mapping analyses for QTL associated some traits affect rice grain quality. Chin Sci Bull 43(16):1747–1750CrossRefGoogle Scholar
  13. He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH (1999) Genetic analysis of rice grain quality. Theor Appl Genet 98:502–508CrossRefGoogle Scholar
  14. Huang JX (2006) Genetic analysis and QTL mapping research of appearance quality traits in indica rice. Master thesis of Xiamen University (in Chinese, English abstract)Google Scholar
  15. Juliano BO (1971) A simplified assay for milling rice amylose. Cereal Sci Today 16:334–336Google Scholar
  16. Kang HG, Park SH, Matsuoka M, An GH (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42:901–911PubMedCrossRefGoogle Scholar
  17. Koh HJ, Son YH, Heu MH, Lee HS, McCouch SR (1999) Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice (Oryza sativa L.). Euphytica 106:57–62CrossRefGoogle Scholar
  18. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105PubMedCrossRefGoogle Scholar
  19. Kubo T, Nakamura K, Yoshimura A (1999) Development of a series of indica chromosome segment substitution lines in japonica background of rice. Rice Genet Newsl 16:104–106Google Scholar
  20. Li JM, Xiao JH, Grandillo S, Jiang LY, Wan YZ, Deng QY, Yuan LP, McCouch SR (2004) QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47:697–704PubMedCrossRefGoogle Scholar
  21. Li ZF, Wan JM, Xia JF, Zhai HQ (2003) Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.). Acta Genet Sin 30:251–259PubMedGoogle Scholar
  22. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing YZ, Zhang Q, Kono I, Yano M, Fjellstrom R, Declerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  23. Nagato K, Ebata M (1959) Studies on white-core rice kernel II on the physical properties of the kernel. Proc Crop Sci Soc Jpn 28:46–50Google Scholar
  24. NSPRC (National Standard of People Republic of China) (1999) High quality paddy, GB/T17891-1999, Standards Press of ChinaGoogle Scholar
  25. O’Shea MG, Morell MK (1996) High resolution slab gel electrophoresis of 8-amino-1, 3, 6-pyrenetrisulfonic acid (APTS) tagged oligosaccharides using a DNA sequencer. Electrophoresis 17:681–688PubMedCrossRefGoogle Scholar
  26. Satoh H, Omura T (1981) New endosperm mutations induced by chemical mutagen in rice, Oryza sativa L. Jpn J Breed 31:316–326Google Scholar
  27. Shi CH, Wu JG, Lou XB, Zhu J, Wu P (2002) Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L.). Field Crops Res 76:1–9CrossRefGoogle Scholar
  28. Singh N, Kaur L, Sandhu KS, Kaur J, Nishinari K (2006) Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloids 20:532–542CrossRefGoogle Scholar
  29. Singh N, Sodhi NS, Kaur M, Saxenda SK (2003) Physicochemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels. Food Chem 82:433–439CrossRefGoogle Scholar
  30. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927PubMedCrossRefGoogle Scholar
  31. Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101:823–829CrossRefGoogle Scholar
  32. Temnykh S, Park WD, Ayres N, Cartinour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequence in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  33. Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112:1258–1270PubMedCrossRefGoogle Scholar
  34. Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ (2005) Stability of QTL for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet 110:1334–1346PubMedCrossRefGoogle Scholar
  35. Wang J, Gai J (2001) The inheritance of resistance of soybeans to agromyzid beanfly (Nelanagromyza sojae zehntaer)-mixed major gene and polygenes genetica analysis. Euphytica 122:9–18CrossRefGoogle Scholar
  36. Wang S, Basten CJ, Zeng ZB (2003) Windows QTL cartographer, version 2.0. Department of Statistics, North Carolina State University, Raleigh (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
  37. Wang JK, Wan XY, Crossa J, Crouch J, Weng JF, Zhai HQ, Wan JM (2006) QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res Camb 88:93–104Google Scholar
  38. Xiao YH, Liu LL, Jiang L, Lu CG, Yu CY, Zhang WW, Zuo JS, Zhai HQ, Wan JM (2005) Development of the chromosome segment substitution lines (CSSL) derived from a hybrid rice cross, PA64s/9311 with super high yield potential. Rice Genet Newsl 22:17–19Google Scholar
  39. Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277PubMedCrossRefGoogle Scholar
  40. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Bala T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene. Plant Cell 12:2473–2483PubMedCrossRefGoogle Scholar
  41. Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153PubMedCrossRefGoogle Scholar
  42. Yao Y, Guiltinan MJ, Thompson DB (2005) High-performance size-exclusion chromatography (HPSEC) and fluorophore-assisted carbohydrate electrophoresis (FACE) to describe the chain-length distribution of debranched starch. Carbohydr Res 340:701–710PubMedCrossRefGoogle Scholar
  43. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Lijun Zhou
    • 1
  • Liangming Chen
    • 1
  • Ling Jiang
    • 1
  • Wenwei Zhang
    • 1
  • Linglong Liu
    • 1
  • Xi Liu
    • 1
  • Zhigang Zhao
    • 1
  • Shijia Liu
    • 1
  • Lujun Zhang
    • 1
  • Jiankang Wang
    • 2
  • Jianmin Wan
    • 1
    • 2
  1. 1.State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene EngineeringNanjing Agricultural UniversityNanjingChina
  2. 2.Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations