Theoretical and Applied Genetics

, Volume 118, Issue 3, pp 413–421 | Cite as

Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species

  • N. C. Bisht
  • V. Gupta
  • N. Ramchiary
  • Y. S. Sodhi
  • A. Mukhopadhyay
  • N. Arumugam
  • D. Pental
  • A. K. Pradhan
Original Paper


Fine mapping of six seed glucosinolate QTL (J2Gsl1, J3Gsl2, J9Gsl3, J16Gsl4, J17Gsl5 and J3Gsl6) (Ramchiary et al. in Theor Appl Genet 116:77–85, 2007a) was undertaken by the candidate gene approach. Based on the DNA sequences from Arabidopsis and Brassica oleracea for the different genes involved in the aliphatic glucosinolate biosynthesis, candidate genes were amplified and sequenced from high to low glucosinolate Brassica juncea lines Varuna and Heera, respectively. Of the 20 paralogues identified, 17 paralogues belonging to six gene families were mapped to 12 of the 18 linkage groups of B. juncea genome. Co-mapping of candidate genes with glucosinolate QTL revealed that the candidate gene BjuA.GSL-ELONG.a mapped to the QTL interval of J2Gsl1, BjuA.GSL-ELONG.c, BjuA.GSL-ELONG.d and BjuA.Myb28.a mapped to the QTL interval of J3Gsl2, BjuA.GSL-ALK.a mapped to the QTL interval of J3Gsl6 and BjuB.Myb28.a mapped to the QTL interval of J17Gsl5. The QTL J9Gsl3 and J16Gsl4 did not correspond to any of the mapped candidate genes. The functionality and contribution of different candidate genes/QTL was assessed by allelic variation study using phenotypic data of 785 BC4DH lines. It was observed that BjuA.Myb28.a and J9Gsl3 contributed significantly to the base level glucosinolate production while J16Gsl4, probably GSL-PRO, BjuA.GSL-ELONG.a and BjuA.GSL-ELONG.c contributed to the C3, C4 and C5 elongation pathways, respectively. Three A genome QTL: J2Gsl1harbouring BjuA.GSL-ELONG.a, J3Gsl2 harbouring both BjuA.GSL-ELONG.c and BjuA.Myb28.a and J9Gsl3, possibly the ‘Bronowski genes’, were identified as most important loci for breeding low glucosinolate B. juncea. We observed two-step genetic control of seed glucosinolate in B. juncea mainly effected by these three A genome QTL. This study, therefore, provides clues to the genetic mechanism of ‘Bronowski genes’ controlling the glucosinolate trait and also provides efficient markers for marker-assisted introgression of low glucosinolate trait in B. juncea.



This work was supported by the Dhara Vegetable Oil and Food Company Ltd (DOFCO), a fully owned company of the National Dairy Development Board (NDDB) and the Department of Biotechnology (DBT). Partial support came from UGC-SAP programme.

Supplementary material

122_2008_907_MOESM1_ESM.ppt (60 kb)
Figure 1S (PPT 60 kb)
122_2008_907_MOESM2_ESM.doc (68 kb)
Table 1S (DOC 68 kb)
122_2008_907_MOESM3_ESM.doc (180 kb)
Table 2S (DOC 180 kb)
122_2008_907_MOESM4_ESM.doc (43 kb)
Table 3S (DOC 43 kb)
122_2008_907_MOESM5_ESM.doc (46 kb)
Table 4S (DOC 47 kb)
122_2008_907_MOESM6_ESM.doc (59 kb)
Table 5S (DOC 59 kb)


  1. Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Moltoff JW, Schipper B, Verbocht H, de Vos RCH, Morandini P, Aarys MGM, Bovy A (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3:e2068PubMedCrossRefGoogle Scholar
  2. Cheung WY, Landry BS, Raney P, Rakow GFW (1998) Molecular mapping of seed quality traits in Brassica juncea L. Czern. and Coss. Acta Hort 459:139–147Google Scholar
  3. Field B, Cardon G, Traka M, Botterman J, Vancanneyt G, Mithen R (2004) Glucosinolate and aminoacid biosynthesis in Arabidopsis. Plant Physiol 135:828–839PubMedCrossRefGoogle Scholar
  4. Gao M, Li G, Potter D, McCombie R, Quiros CF (2006) Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana. Plant Cell Rep 25:592–598PubMedCrossRefGoogle Scholar
  5. Gland A, Röbbelen G, Thies W (1981) Variation of alkenyl glucosinolates in seeds of Brassica species. Z Pflanzenzüchtg 87:96–110Google Scholar
  6. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333CrossRefGoogle Scholar
  7. Hasan M, Friedt W, Pons-Kühnemann J, Frietag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049CrossRefPubMedGoogle Scholar
  8. Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483PubMedCrossRefGoogle Scholar
  9. Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologoue loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460PubMedCrossRefGoogle Scholar
  10. Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825PubMedCrossRefGoogle Scholar
  11. Kondra ZP, Stefannson BR (1970) Inheritance of major glucosinolates in rapeseed (Brassica napus) meal. Can J Plant Sci 50:643–647Google Scholar
  12. Kraling K, Robbelen G, Thies W, Herrmann M, Ahmadi MR (1990) Variation in seed glucosinolates in lines of Brassica napus. Plant Breed 105:33–39CrossRefGoogle Scholar
  13. Li G, Quiros CF (2002) Genetic analysis, expression and molecular characterization of BoGSL-ELONG, a major gene involved in the aliphatic glucosinolate pathway of Brassica species. Genetics 162:1937–1943PubMedGoogle Scholar
  14. Lionneton E, Aubert G, Ochatt S, Merah O (2004) Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet 109:792–799PubMedCrossRefGoogle Scholar
  15. Love HR, Rakow G, Raney JP, Downey RK (1990a) Development of low glucosinolate mustard. Can J Plant Sci 70:419–424Google Scholar
  16. Love HR, Rakow G, Raney JP, Downey RK (1990b) Genetic control of 2-propenyl and 3-butenyl glucosinolate synthesis in mustard. Can J Plant Sci 70:425–429CrossRefGoogle Scholar
  17. Magrath R, Herron C, Giamoustaris A, Mithen R (1993) The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breed 111:55–72CrossRefGoogle Scholar
  18. Magrath R, Bano F, Parkin I, Sharpe A, Lister C (1994) Genetics of aliphatic glucosinolates I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72:290–299CrossRefGoogle Scholar
  19. Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003) Molecular mapping of seed aliphatic glucosinolates in Brassica juncea. Genome 46:753–760PubMedCrossRefGoogle Scholar
  20. Mukhopadhyay A, Arumugam N, Sodhi YS, Gupta V, Pradhan AK, Pental D (2007) High frequency production of microspore derived doubled haploid (DH) and its application for developing low glucosinolate lines in Indian Brassica juncea. In: Proceedings of the 12th international rapeseed congress, Wuhan, pp 333–335Google Scholar
  21. Østergaard L, King GJ (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4:10PubMedCrossRefGoogle Scholar
  22. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113PubMedCrossRefGoogle Scholar
  23. Potts D, Rakow G, Males DR (1999) Canola quality Brassica juncea, a new oilseed crop for the Canadian prairies. In: Proceedings of the international rapeseed congress, Canberra, 26–29 September (CD-ROM)Google Scholar
  24. Pradhan AK, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D (2003) A high density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet 106:607–614PubMedGoogle Scholar
  25. Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561PubMedCrossRefGoogle Scholar
  26. Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007a) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85PubMedCrossRefGoogle Scholar
  27. Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2007b) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet 115:807–817PubMedCrossRefGoogle Scholar
  28. Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Shilperoot RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–8Google Scholar
  29. Sodhi YS, Mukhopadhyay A, Arumugam N, Verma JK, Gupta V, Pental D, Pradhan AK (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and a low glucosinolate line of Brassica juncea. Plant Breed 121:508–511CrossRefGoogle Scholar
  30. Srivastava A, Gupta V, Pental D, Pradhan AK (2001) AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea. Theor Appl Genet 102:193–199CrossRefGoogle Scholar
  31. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  32. Stam P, Van Ooijen JW (1996) Joinmap version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, WageningenGoogle Scholar
  33. Stringam GR, Thiagarajah MR (1995) Inheritance of alkenyl glucosinolates in traditional and microspore-derived doubled haploid populations of Brassica juncea L. Czern and Coss. In: Proceedings of the 9th international rapeseed congress, Cambridge, pp 804–806Google Scholar
  34. Toroser D, Thormann CE, Osborn TC, Mithen R (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L.). Theor Appl Genet 91:802–808CrossRefGoogle Scholar
  35. Uzunova M, Ecke W, Weissleder K, Robbelen G (1995) Mapping the genome of rapeseed (Brassica napus L). 1. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204CrossRefGoogle Scholar
  36. Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • N. C. Bisht
    • 1
    • 3
  • V. Gupta
    • 1
  • N. Ramchiary
    • 2
    • 4
  • Y. S. Sodhi
    • 1
  • A. Mukhopadhyay
    • 1
  • N. Arumugam
    • 1
    • 5
  • D. Pental
    • 1
    • 2
  • A. K. Pradhan
    • 1
    • 2
  1. 1.Centre for Genetic Manipulation of Crop PlantsUniversity of Delhi South CampusNew DelhiIndia
  2. 2.Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia
  3. 3.National Institute of Plant Genome ResearchJNU CampusNew DelhiIndia
  4. 4.Department of HorticultureChungnam National UniversiyYuseong-gu, DaejeonSouth Korea
  5. 5.Department of BiotechnologyPondicherry UniversityPondicherryIndia

Personalised recommendations