Theoretical and Applied Genetics

, Volume 118, Issue 2, pp 275–284 | Cite as

Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375

  • Ali Essafi
  • Juan A. Díaz-Pendón
  • Enrique Moriones
  • Antonio J. Monforte
  • Jordi Garcia-Mas
  • Ana M. Martín-HernándezEmail author
Original Paper


Resistance to Cucumber mosaic virus (CMV) in the exotic melon accession PI 161375, cultivar “Sonwang Charmi” (SC) had previously been described as oligogenic, recessive and quantitative, with a major QTL residing in linkage group XII (LGXII). We have used a collection of near isogenic lines (NILs) with introgressions of SC into the genome of the susceptible accession Piel de Sapo (PS) to further characterise this resistance. Infection of NILs carrying introgressions on LGXII showed that only NIL SC12-1 was resistant to CMV strains P9 and P104.82, but not to strains M6 and TL. Further mapping of this region showed that the resistance, named cmv1 maps in an area of 2.2 cM, between markers CMN61_44 and CMN21_55. Moreover, cmv1 confers total resistance to strains P9 and P104.82, indicating that in these cases it is not quantitative and that cmv1 is sufficient to confer full resistance to these CMV strains. Candidate gene mapping of ten translation initiation factors in the melon genome failed to find any of them in the interval between markers CMN61_44 and CMN21_55. All these results suggest that the resistance to CMV present in SC is oligogenic, where different loci confer resistance to different CMV strains, but not necessarily quantitative, since at least one of these genes (cmv1) confers total resistance, similar to that of the parental SC, and does not need the contribution of other loci.


Melon Cucumber Mosaic Virus Translation Initiation Factor Recessive Resistance Recessive Resistance Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Antonio Ortigosa and Fuensanta García for technical assistance, José Aramburu for his technical help with CMV infections, Juan José Lopez-Moya for CMVCP PCR primers, Catherine Dogimont for providing P9 and TL CMV strains and Marisol Luis-Arteaga for providing P104.82 strain. The work was funded by grant AGL2006-12780-C02-01/AGR from the Spanish Ministerio de Educación y Ciencia (MEC). A.E. was supported by an IAMZ fellowship, and J.A. D.-P. and A.M. M.-H. were supported by the Ministerio de Educación y Ciencia with a Juan de la Cierva and Ramón y Cajal contracts, respectively.

Note added in proofs

During the publishing procedure a paper concerning the mapping of markers ECM67 and ECM105 has been published. The reference is Fernández-Silva, I Moreno E, Eduardo I, Arús P, Alvarez JM, Monforte AJ. (2008) On the Genetic Control of Heterosis for Fruit Shape in Melon (Cucumis Melo L.). J. of Heredity DOI  10.1007/s00122-008-0883-3.


  1. Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop MN, Jones M, Ghesquiere A (2006) Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J 47:417–426PubMedCrossRefGoogle Scholar
  2. Caranta C, Pflieger S, Lefebvre V, Daubeze AM, Thabuis A, Palloix A (2002) QTLs involved in the restriction of Cucumber mosaic virus (CMV) long-distance movement in pepper. Theor Appl Genet 104:586–591PubMedCrossRefGoogle Scholar
  3. Deleu W, Gonzalez V, Monfort A, Bendahmane A, Puigdomenech P, Arus P, Garcia-Mas J (2007) Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genomics 278:611–622PubMedCrossRefGoogle Scholar
  4. Diaz JA, Mallor C, Soria C, Camero R, Garzo E, Fereres A, Alvarez JM, Gómez-Guillamón ML, Luis-Arteaga M, Moriones E (2003) Potential sources of resistance for melon to nonpersistently aphid-borne viruses. Plant Dis 87:960–964CrossRefGoogle Scholar
  5. Dogimont C, Leconte L, Perin C, Thabuis A, Lecoq H, Pitrat M (2000) Identification of QTLs contributing to resistance to different strains of Cucumber Mosaic cucumovirus in melon. Acta Hortic 510:391–398Google Scholar
  6. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  7. Eduardo I, Arus P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148PubMedCrossRefGoogle Scholar
  8. Frantz JD, Jahn MM (2004) Five independent loci each control monogenic resistance to gummy stem blight in melon (Cucumis melo L.). Theor Appl Genet 108:1033–1038PubMedCrossRefGoogle Scholar
  9. Fraser R (1990) The genetics of resistance to plant viruses. Annu Rev Phytopathol 28:179–200CrossRefGoogle Scholar
  10. Fukino N, Sakata Y, Kunihisa M, Matsumoto S (2007) Characterisation of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. J Hortic Sci Biotechnol 82:330–334Google Scholar
  11. Gao Z, Johansen E, Eyers S, Thomas CL, Noel Ellis TH, Maule AJ (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385PubMedCrossRefGoogle Scholar
  12. Garcia-Mas J, Oliver M, Gómez-Paniagua H, de Vicente MC (2000) Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet 101:860–864CrossRefGoogle Scholar
  13. Gonzalez-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P, Nuez F, Garcia-Mas J, Puigdomènech P, Aranda MA (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306PubMedCrossRefGoogle Scholar
  14. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte AJ (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811PubMedCrossRefGoogle Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309PubMedCrossRefGoogle Scholar
  17. Karchi Z, Cohen S, Govers A (1975) Inheritance of resistance to Cucumber mosaic virus in melons. Phytopathology 65:479–481CrossRefGoogle Scholar
  18. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  19. Lellis AD, Kasschau KD, Whitham SA, Carrington JC (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12:1046–1051PubMedCrossRefGoogle Scholar
  20. Leroux JP, Quiot JB, Lecoq H, Pitrat M (1979) Mise en évidence et répartition dans le Sud-Est de la France d’un pathotype particulier du Virus de la Mosaïque du Cocombre. Ann Phytopathol 11:431–438Google Scholar
  21. Maule AJ, Caranta C, Boulton MI (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathol 8:223–233CrossRefPubMedGoogle Scholar
  22. Morales M, Roig E, Monforte AJ, Arus P, Garcia-Mas J (2004) Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 47:352–360PubMedCrossRefGoogle Scholar
  23. Morales M, Orjeda G, Nieto C, van Leeuwen H, Monfort A, Charpentier M, Caboche M, Arus P, Puigdomenech P, Aranda MA, Dogimont C, Bendahmane A, Garcia-Mas J (2005) A physical map covering the nsv locus that confers resistance to Melon necrotic spot virus in melon (Cucumis melo L.). Theor Appl Genet 111:914–922PubMedCrossRefGoogle Scholar
  24. Moreno E, Obando JM, Dos-Santos N, Fernández-Trujillo JP, Monforte AJ, Garcia-Mas J (2007) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116:589–602PubMedCrossRefGoogle Scholar
  25. Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomenech P, Pitrat M, Caboche M, Dogimont C, Garcia-Mas J, Aranda MA, Bendahmane A (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J 48:452–462PubMedCrossRefGoogle Scholar
  26. Noueiry AO, Chen J, Ahlquist P (2000) A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc Natl Acad Sci USA 97:12985–12990PubMedCrossRefGoogle Scholar
  27. Palukaitis P, Roossinck MJ, Dietzgen RG, Francki RIB (1992) Cucumber mosaic virus. Adv Virus Res 41:281–348PubMedCrossRefGoogle Scholar
  28. Perin C, Hagen S, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034PubMedCrossRefGoogle Scholar
  29. Provvidenti R, Hampton RO (1992) Sources of resistance to viruses in the Potyviridae. Arch Virol Suppl 5:189–211PubMedGoogle Scholar
  30. Requena A, Simon-Buela L, Salcedo G, Garcia-Arenal F (2006) Potential involvement of a cucumber homolog of phloem protein 1 in the long-distance movement of Cucumber mosaic virus particles. Mol Plant Microbe Interact 19:734–746PubMedCrossRefGoogle Scholar
  31. Risser G, Pitrat M, Rode JC (1977) Etude de la résistance du melon (Cucumis melo L.) au virus de la mosaïque du concombre. Ann Amél Plant 27:509–522Google Scholar
  32. Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45PubMedCrossRefGoogle Scholar
  33. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  34. Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 87:2089–2098PubMedCrossRefGoogle Scholar
  35. Rusholme RL, Higgins EE, Walsh JA, Lydiate DJ (2007) Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). J Gen Virol 88:3177–3186PubMedCrossRefGoogle Scholar
  36. Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucas WJ, Gilbertson RL (2006) A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc Natl Acad Sci USA 103:11856–11861PubMedCrossRefGoogle Scholar
  37. Stamova BS, Chatelat RT (2000) Inheritance and genetic mapping of Cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theor Appl Genet 1001:527–537CrossRefGoogle Scholar
  38. Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922PubMedCrossRefGoogle Scholar
  39. Takahashi H, Suzuki M, Natsuaki K, Shigyo T, Hino K, Teraoka T, Hosokawa D, Ehara Y (2001) Mapping the virus and host genes involved in the resistance response in Cucumber mosaic virus-infected Arabidopsis thaliana. Plant Cell Physiol 42:340–347PubMedCrossRefGoogle Scholar
  40. Valkonen JP, Watanabe KN (1999) Autonomous cell death, temperature sensitivity and the genetic control associated with resistance to Cucumber mosaic virus (CMV) in diploid potatoes (Solanum spp). Theor Appl Genet 99:996–1005CrossRefGoogle Scholar
  41. van Leeuwen H, Monfort A, Zhang HB, Puigdomenech P (2003) Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51:703–718PubMedCrossRefGoogle Scholar
  42. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459PubMedCrossRefGoogle Scholar
  43. Yoshii M, Yoshioka N, Ishikawa M, Naito S (1998) Isolation of an Arabidopsis thaliana mutant in which the multiplication of both Cucumber mosaic virus and Turnip Crinkle virus is affected. J Virol 72:8731–8737PubMedGoogle Scholar
  44. Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R, Naito S, Ishikawa M (2004) The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J Virol 78:6102–6111PubMedCrossRefGoogle Scholar
  45. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ali Essafi
    • 1
  • Juan A. Díaz-Pendón
    • 2
  • Enrique Moriones
    • 2
  • Antonio J. Monforte
    • 1
    • 3
  • Jordi Garcia-Mas
    • 1
  • Ana M. Martín-Hernández
    • 1
    Email author
  1. 1.IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UABCabrils, BarcelonaSpain
  2. 2.Estación Experimental “La Mayora” CSICAlgarrobo-Costa, MálagaSpain
  3. 3.Instituto de Biología Molecular y Celular de Plantas (IBMCP)(CSIC-UPV) Ingeniero Fausto Elio, s/n CPI “Ciudad Politécnica de la Innovación DE LA INNOVACIÓN”- Edificio 8EValenciaSpain

Personalised recommendations