Theoretical and Applied Genetics

, Volume 118, Issue 1, pp 165–175 | Cite as

Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.)

  • Nobuko FukinoEmail author
  • Takayoshi Ohara
  • Antonio J. Monforte
  • Mitsuhiro Sugiyama
  • Yoshiteru Sakata
  • Miyuki Kunihisa
  • Satoru Matsumoto
Original Paper


Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.


Quantitative Trait Locus Linkage Group Powdery Mildew Melon Composite Interval Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Green Technology Project (grant DM-1607) from the Ministry of Agriculture, Forestry and Fisheries of Japan and by KAKENHI 19580043 from the Ministry of Education, Culture, Sports, Science and Technology. We are grateful to Dr. M. Kuzuya, Plant Biotechnology Institute, Ibaraki Agricultural Center, for kindly providing powdery mildew. We also thank Drs. Y. Yoshioka and K. Yamashita for their support in statistical analysis.


  1. Alvarez JM, Gonzalez-Torres R, Mallor C, Gomez-Guillamon ML (2005) Potential sources of resistance to fusarium wilt and powdery mildew in melons. HortScience 40:1657–1660Google Scholar
  2. Bardin M, Dogimont C, Nicot P, Pitrat M (1999) Genetic analysis of resistance of melon line PI 124112 to Sphaerotheca fuliginea and Erysiphe cichoracearum studied in recombinant inbred lines. Acta Hortic 492:163–168Google Scholar
  3. Baudracco-Arnas S, Pitrat M (1996) A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93:57–64CrossRefGoogle Scholar
  4. Bohn GW, Kishaba AN, Principe JA, Toba HH (1973) Tolerance to melon aphid in Cucumis melo L. J Am Soc Hort Sci 98:37–40Google Scholar
  5. Boiteux LS, Reifschneider FJB, Pessoa HBSV (1995) Phenotypic expression of quantitative and qualitative components of partial resistance to powdery mildew (Sphaerotheca fuliginea race 1) in melon (Cucumis melo) germplasm. Plant Breed 114:185–187CrossRefGoogle Scholar
  6. Brotman Y, Kovalski I, Dogimont C, Pitrat M, Portnoy V, Kaztir N, Perl-Treves R (2005) Molecular markers linked to papaya ring spot virus resistance and Fusarium race 2 resistance in melon. Theor Appl Genet 110:337–345PubMedCrossRefGoogle Scholar
  7. Chiba N, Suwabe K, Nunome T, Hirai M (2003) Development of microsatellite markers in melon (Cucumis melo L.) and their application to major cucurbit crops. Breed Sci 53:21–27CrossRefGoogle Scholar
  8. Clayberg CD (1992) Interaction and linkage test of flesh colour genes in Cucumis melo L. Cucurbit Genet Coop Rep 15:53Google Scholar
  9. Cohen R (1993) A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Plant Disease 77:513–517Google Scholar
  10. Cohen Y, Eyal H (1988) Epifluorescence microscopy of Sphaerotheca fuliginea race 2 on susceptible and resistant genotypes. Phytopathology 78:144–148CrossRefGoogle Scholar
  11. Cohen Y, Burger Y, Shraiber S (2002) Physiological races of Sphaerotheca fuliginea: factors affecting their identification and the significance of this knowledge. Cucurbitaceae 2002:181–187Google Scholar
  12. Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arús P, de Vicente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974PubMedCrossRefGoogle Scholar
  13. Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arús P, de Vicente CM, Katzir N (2001) Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 102:61–72CrossRefGoogle Scholar
  14. Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384CrossRefGoogle Scholar
  15. Epinat C, Pitrat M, Bertrand M (1993) Genetic analysis of resistance of five melon lines to powdery mildews. Euphytica 65:135–144CrossRefGoogle Scholar
  16. Fazio G, Staub JE, Chung SM (2002) Development and characterization of PCR markers in cucumber. J Am Soc Hort Sci 127:545–557Google Scholar
  17. Fernandez-Silva I, Eduardo I, Blanca Postigo J, Esteras C, Pico B, Nuez Vinals F, Arus P, Garcia-Mas J, Monforte A (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet (in press)Google Scholar
  18. Floris E, Alvarez JM (1995) Genetic analysis of resistance of three melon lines to Sphaerotheca fuliginea. Euphytica 81:181–186CrossRefGoogle Scholar
  19. Fukino N, Kunihisa M, Matsumoto S (2004) Characterization of recombinant inbred lines derived from crosses in melon (Cucumis melo L.), AR 5′ ‘Harukei No. 3’. Breed Sci 54:141–145CrossRefGoogle Scholar
  20. Fukino N, Sakata Y, Kunihisa M, Matsumoto S (2007) Characterisation of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. J Hort Sci Biotechnol 82:330–334Google Scholar
  21. Gonzalez-Ibeas D, Blanca J, Roig C, González-To M, Picó B, Truniger V, Gómez P, Deleu W, Caño-Delgado A, Arús P et al (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306PubMedCrossRefGoogle Scholar
  22. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Simple sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811PubMedCrossRefGoogle Scholar
  23. Hosoya K, Narisawa K, Pitrat M, Ezura H (1999) Race identification in powdery mildew (Sphaerotheca fuliginea) on melon (Cucumis melo) in Japan. Plant Breed 118:259–262CrossRefGoogle Scholar
  24. Hosoya K, Kuzuya M, Murakami T, Kato K, Narisawa K, Ezura H (2000) Impact of resistant melon cultivars on Sphaerotheca fuliginea. Plant Breed 119:286–288CrossRefGoogle Scholar
  25. Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283–297PubMedCrossRefGoogle Scholar
  26. Kobayashi N, Yanoria MJT, Tsunematsu H, Kato H, Imbe T, Fukuta Y (2007) Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). JARQ 41:31–37Google Scholar
  27. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175Google Scholar
  28. Kunihisa M, Fukino N, Matsumoto S (2003) Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. Euphytica 134:209–215CrossRefGoogle Scholar
  29. Kuzuya M, Tomita T, Ezura H (2000) Histological observation of powdery mildew resistance on melon lines. Japanese Breed Res 2(1):298Google Scholar
  30. Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  31. Lehmann EL (1975) Nonparametrics. McGraw-Hill, New YorkGoogle Scholar
  32. Matsumoto S, Kunihisa M, Fukino N (2005) Quick and easy DNA extraction from multiple samples of strawberry for classification of cultivars. Res Results Veg Tea Sci 2004:11–12 (in Japanese)Google Scholar
  33. McCreight JD (2003) Genes for resistance to powdery mildew races 1 and 2US in melon PI 313970. HortScience 38:591–594Google Scholar
  34. McCreight JD, Kishaba AN, Bohn GW (1984) AR Hale’s Best Jumbo, AR 5, and AR Topmark: melon aphid-resistant muskmelon breeding lines. HortScience 19:309–310Google Scholar
  35. McCreight JD, Coffey MD, Turini TA, Matheron ME (2005) Field evidence for a new race of powdery mildew on melon. HortScience 40:888Google Scholar
  36. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758PubMedCrossRefGoogle Scholar
  37. Morales M, Roig E, Monforte AJ, Arús P, Garcia-Mas J (2004) Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 47:352–360PubMedCrossRefGoogle Scholar
  38. Morales M, Orjeda G, Nieto C, van Leeuwen H, Monfort A, Charpentier M, Caboche M, Arús P, Puigdomenech P, Aranda MA et al (2005) A physical map covering the nsv locus that confers resistance to melon necrotic spot virus in melon (Cucumis melo L.). Theor Appl Genet 111:914–922PubMedCrossRefGoogle Scholar
  39. Moreno E, Obando JM, Dos-Santos N, Fernández-Trujillo JP, Monforte AJ, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. doi: 10.1007/s00122-007-0694-y
  40. Morishita M, Sugiyama K, Saito T, Sakata Y (2003) Powdery mildew resistance in cucumber. Jpn Agric Res Q 37(1):7–14Google Scholar
  41. Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, Puigdomènech P, Pitrat M, Caboche M, Dogimont C et al (2006) An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J 48:452–462PubMedCrossRefGoogle Scholar
  42. Oliver M, Garcia-Mas J, Cardús M, Pueyo N, López-Sesé AI, Arroyo M, Gómez-Paniagua H, Arús P, de Vicente MC (2001) Construction of a reference linkage map for melon. Genome 44:836–845PubMedCrossRefGoogle Scholar
  43. Orihara N, Uekusa H, Kusano K, Abiko K, Morishita M (2001) Race differentiation of melon powdery mildew fungus (Sphaerotheca fuliginea) from Kanagawa Prefecture, and the relationship between races and resistance of commercial varieties. Ann Rep Kanto-Tosan Plant Prot Soc 48:45–48 (in Japanese)Google Scholar
  44. Paran I, Goldman I, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548CrossRefGoogle Scholar
  45. Perchepied L, Bardin M, Dogimont C, Pitrat M (2005) Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95:556–565PubMedCrossRefGoogle Scholar
  46. Périn C, Hagen L, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034PubMedCrossRefGoogle Scholar
  47. Pitrat M (1991) Linkage groups in Cucumis melo L. J Hered 82:406–411Google Scholar
  48. Pitrat M, Lecoq H (1980) Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathology 70:958–961CrossRefGoogle Scholar
  49. Ritschel PS, Lins TC, Tristan L, Buso GSC, Buso JA, Ferreira ME (2004) Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4:9PubMedCrossRefGoogle Scholar
  50. Rivera ME, Codina JC, Olea F, de Vicente AD, Pérez-García A (2002) Differential expression of β-1, 3-glucanase in susceptible and resistant melon cultivars in response to infection by Sphaerotheca fusca. Physiol Mol Plant Pathol 61:257–265CrossRefGoogle Scholar
  51. Rudi K, Treimo J, Moen B, Rud I, Vegarud G (2002) Multicolor post-PCR labeling of DNA fragments with fluorescent ddNTPs. BioTechniques 33:502–506Google Scholar
  52. Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, Klinger J, Thompson G, Portnoy V, Katzir N, Perl-Treves R (2003) Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 46:761–773PubMedCrossRefGoogle Scholar
  53. Sitterly WR (1978) Powdery mildew of cucurbits. In: Spencer DM (ed) The powdery mildews. Academic Press, New York, pp 359–379Google Scholar
  54. Sowell G Jr, Corley WL (1974) Severity of race 2 of Sphaerotheca fuliginea (Schlecht.) Poll. on muskmelon introductions reported resistant to powdery mildew. HortScience 9:398–399Google Scholar
  55. Sugiyama M, Sakata Y (2004) Screening for inheritance of melon necrotic spot virus (MNSV) resistance by mechanical inoculation. J Jpn Soc Hort Sci. 73(6):558–567CrossRefGoogle Scholar
  56. van Ooijen JW (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma B. V., WageningenGoogle Scholar
  57. Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. (
  58. Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95:791–798CrossRefGoogle Scholar
  59. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206PubMedCrossRefGoogle Scholar
  60. Xu XY, Bai GH, Carver BF, Shaner GE, Hunger RM (2006) Molecular characterization of a powdery mildew resistance gene in wheat cultivar Suwon 92. Phytopathology 96:496–500PubMedCrossRefGoogle Scholar
  61. Yoshida T, Kohyama T (1986) Mechanisms, genetics and selection methods of aphid resistance in melons, Cucumis melo. Bull Veg Ornam Crops Res Sta Ser C (Kurume) 9:1–12Google Scholar
  62. Yoshida T, Iwanaga Y (1991) Resistance to cotton aphid (Aphis gossypii G.) in melon : its mechanism and selection methods. JARQ 24:280–286Google Scholar
  63. Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201PubMedCrossRefGoogle Scholar
  64. Zheng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976CrossRefGoogle Scholar
  65. Zheng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nobuko Fukino
    • 1
    Email author
  • Takayoshi Ohara
    • 1
  • Antonio J. Monforte
    • 2
  • Mitsuhiro Sugiyama
    • 1
  • Yoshiteru Sakata
    • 1
  • Miyuki Kunihisa
    • 1
  • Satoru Matsumoto
    • 1
  1. 1.National Institute of Vegetable and Tea Science (NIVTS)TsuJapan
  2. 2.IRTA Centro de Recerca en AgrigenómicaCabrilsSpain

Personalised recommendations