Advertisement

Theoretical and Applied Genetics

, Volume 117, Issue 3, pp 369–382 | Cite as

QTL analysis of ergot resistance in sorghum

  • D. K. Parh
  • D. R. Jordan
  • E. A. B. Aitken
  • E. S. Mace
  • P. Jun-ai
  • C. L. McIntyre
  • I. D. Godwin
Original Paper

Abstract

Sorghum ergot, caused predominantly by Claviceps africana Frederickson, Mantle, de Milliano, is a significant threat to the sorghum industry worldwide. The objectives of this study were firstly, to identify molecular markers linked to ergot resistance and to two pollen traits, pollen quantity (PQ) and pollen viability (PV), and secondly, to assess the relationship between the two pollen traits and ergot resistance in sorghum. A genetic linkage map of sorghum RIL population R931945-2-2 × IS 8525 (resistance source) was constructed using 303 markers including 36 SSR, 117 AFLP™, 148 DArT™ and two morphological trait loci. Composite interval mapping identified nine, five, and four QTL linked to molecular markers for percentage ergot infection (PCERGOT), PQ and PV, respectively, at a LOD >2.0. Co-location/linkage of QTL were identified on four chromosomes while other QTL for the three traits mapped independently, indicating that both pollen and non pollen-based mechanisms of ergot resistance were operating in this sorghum population. Of the nine QTL identified for PCERGOT, five were identified using the overall data set while four were specific to the group data sets defined by temperature and humidity. QTL identified on SBI-02 and SBI-06 were further validated in additional populations. This is the first report of QTL associated with ergot resistance in sorghum. The markers reported herein could be used for marker-assisted selection for this important disease of sorghum.

Keywords

Quantitative Trait Locus Sorghum Quantitative Trait Locus Region Pollen Viability Quantitative Trait Locus Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the financial help of the Cooperative Research Centre for Tropical Plant Protection, University of Queensland, Australia; the Department of Primary Industries and Fisheries, Queensland, Australia and the Commonwealth Scientific and Industrial Research Organization, Australia.

References

  1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathnell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420PubMedCrossRefGoogle Scholar
  2. Bandyopadhyay R, Frederickson D, McLaren N, Odvody G, Ryley M (1998) Ergot: A new disease threat to sorghum in the Americas and Australia. Plant Dis 82:356–367CrossRefGoogle Scholar
  3. Basten C, Weir B, Zeng Z-B (2002) QTL Cartographer, Version 1.16. In. Department of Statistics. North Carolina State University, Raleigh, NCGoogle Scholar
  4. Bhattramakki D, Dong JM, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002PubMedCrossRefGoogle Scholar
  5. Blaney B, McKenzie R, Walters J, Taylor L, Bewg W, Ryley M, Maryam R (2000) Sorghum ergot (Claviceps africana) associated with agalactia and feed refusal in pigs and dairy cattle. Aust Vet J 78:102–107PubMedCrossRefGoogle Scholar
  6. Brown S, Hopkins M, Mitchell S, Senior M, Wang T, Duncan R, Gonzalez-Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor] (L.) Moench]. Theor Appl Genet 93:190–198CrossRefGoogle Scholar
  7. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  8. Dahlberg JA, Bandyopadhyay R, Rooney WL, Odvody GN, Madera-Torres P (2001) Evaluation of sorghum germplasm used in US breeding programmes for sources of sugary disease resistance. Plant Pathol 50:681–689CrossRefGoogle Scholar
  9. Frederickson D, Mantle P, de Milliano W (1994) Susceptibility to ergot in Zimbabwe of sorghums that remained uninfected in their native climates in Ethiopia and Rwanda. Plant Pathol 43:27–32CrossRefGoogle Scholar
  10. George MLC, Prasanna BM, Rathore RS, Setty TAS, Kasim F, Azrai M, Vasal S, Balla O, Hautea D, Canama A, Regalado E, Vargas M, Khairallah M, Jeffers D, Hoisington D. (2003) Identification of QTL conferring resistance to downy mildews of maize in Asia. Theor Appl Genet 107:544–551PubMedCrossRefGoogle Scholar
  11. Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H, Zhuang J-Y, Zheng K-L, Liu G-F, Wang G-C, Sidhu J, Srivantaneeyakul S, Singh V, Bagali P, Prasanna H, McLaren G, Khush G (2003) Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107:679–690PubMedCrossRefGoogle Scholar
  12. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29(4):e25PubMedCrossRefGoogle Scholar
  13. Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173PubMedCrossRefGoogle Scholar
  14. Klein R, Rodriguez-Herrera R, Schlueter J, Klein P, YU Z, Rooney W (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319CrossRefGoogle Scholar
  15. Kong L, Dong J, Hart G (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448CrossRefGoogle Scholar
  16. Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  17. Lander E, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits by using RFLP linkage maps. Genetics 136:185–199Google Scholar
  18. Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oriza sativa L.). Genetics 145:453–465PubMedGoogle Scholar
  19. Liao CY, Wu P, Hu B, Yi KK (2001) Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet 103:104–111CrossRefGoogle Scholar
  20. Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian K (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26PubMedCrossRefGoogle Scholar
  21. McLaren N (1992) Quantifying resistance of sorghum genotypes to sugary disease pathogen (Claviceps africana). Plant Dis 76:986–988Google Scholar
  22. McLaren N, Flett B (1998) Use of weather variables to quantify sorghum ergot potential in South Africa. Plant Dis 82:26–29CrossRefGoogle Scholar
  23. McMullen M, Simcox K (1995) Genomic organization of disease and insect resistance genes in maize. Mol Plant Microbe Interact 8:811–815Google Scholar
  24. Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP®, RFLP and SSR markers. Plant Mol Bio 48:483–499Google Scholar
  25. Mester D, Ronin Y, Minkov D, Nevo E, Korol A (2003) Constructing large-scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269–2282PubMedGoogle Scholar
  26. Parh DK, Jordan DR, Aitken EAB, Gogel BJ, McIntyre CL, Godwin ID (2006) Genetic components of variance and the role of pollen traits in sorghum ergot resistance. Crop Sci 46:2387–2395CrossRefGoogle Scholar
  27. Pazoutova S (2000) The phylogeny and evolution of the genus Claviceps. Mycol Res 105:275–283CrossRefGoogle Scholar
  28. Persley DM, Moore RF, Fletcher DS (1977) The inheritance of the red leaf reaction of grain sorghum to sugarcane mosaic virus infection. Aust J Agric Res 28:853–858CrossRefGoogle Scholar
  29. Reed JD, Tuinstra MR, McLaren NW, Kofoid KD, Ochanda NW, Claflin LE (2002) Analysis of combining ability for ergot resistance in grain sorghum. Crop Sci 42:1818–1823Google Scholar
  30. Saghai Maroof M, Soliman K, Jorgenson R, Allard R (1984) Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedCrossRefGoogle Scholar
  31. Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40:1438–1444Google Scholar
  32. Tao Y, Jordan D, Henzell R, McIntyre C (1998) Identification of genomic regions for rust resistance in sorghum. Euphytica 103:287–292CrossRefGoogle Scholar
  33. Ungerer M, Halldorsdottir S, Modliszewski J, Mackay T, Purugganan M (2002) Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 160:1133–1151PubMedGoogle Scholar
  34. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  35. Wang EL, Meinke H, Ryley M (2000) Event frequency and severity of sorghum ergot in Australia. Aust J Agric Res 51:457–466CrossRefGoogle Scholar
  36. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Jaroslava O, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206–228Google Scholar
  37. Wittenberg AHJ, van der Lee T, Cayla C, Kilian A, Visser RGF, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Gen Genomics 274:30–33CrossRefGoogle Scholar
  38. Xia L, Peng K, Yang S, Wenzl P, Carmen de Vicente M, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098PubMedCrossRefGoogle Scholar
  39. Xing Y, Tan Y, Hua J, Sun X, Xu C, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTL on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257PubMedCrossRefGoogle Scholar
  40. Xu Y (2002) Gobal view of QTL: rice as a model. CAB InternationalGoogle Scholar
  41. Yang J, Hu CC, Ye XZ, Zhu J (2005) QTL Network–2.0. Institute of Bioinformatics, Zhejiang University, Hangzhou, China (http://ibi.zju.edu.cn/software/qtlnetwork)
  42. Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595PubMedCrossRefGoogle Scholar
  43. Yousef GG, Juvik JA (2002) Enhancement of seedling emergence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Sci 42:96–104PubMedGoogle Scholar
  44. Yu S, Li J, Xu C, Tan Y, Gao Y, Li X, Zhang Q, Saghai Maroof M (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231PubMedCrossRefGoogle Scholar
  45. Zeng Z-B (1993) Theoretical basis for seperation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976PubMedCrossRefGoogle Scholar
  46. Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1465PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • D. K. Parh
    • 1
    • 2
    • 3
    • 6
  • D. R. Jordan
    • 4
  • E. A. B. Aitken
    • 2
    • 3
  • E. S. Mace
    • 4
  • P. Jun-ai
    • 7
  • C. L. McIntyre
    • 2
    • 5
  • I. D. Godwin
    • 1
    • 2
  1. 1.School of Land and Food SciencesUniversity of QueenslandBrisbaneAustralia
  2. 2.CRC for Tropical Plant ProtectionUniversity of QueenslandBrisbaneAustralia
  3. 3.School of Integrative BiologyUniversity of QueenslandBrisbaneAustralia
  4. 4.Department of Primary Industries and FisheriesHermitage Research StationWarwickAustralia
  5. 5.CSIRO Plant IndustryQueensland Bioscience PrecinctBrisbaneAustralia
  6. 6.David North Plant Research CentreBureau of Sugar Experiment StationBrisbaneAustralia
  7. 7.Sorghum InstituteShanxi Academy of Agricultural ScienceJinzhongChina

Personalised recommendations