Advertisement

Theoretical and Applied Genetics

, Volume 116, Issue 8, pp 1105–1116 | Cite as

The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L.

  • I. Lejeune-HénautEmail author
  • E. Hanocq
  • L. Béthencourt
  • V. Fontaine
  • B. Delbreil
  • J. Morin
  • A. Petit
  • R. Devaux
  • M. Boilleau
  • J.-J. Stempniak
  • M. Thomas
  • A.-L. Lainé
  • F. Foucher
  • A. Baranger
  • J. Burstin
  • C. Rameau
  • C. Giauffret
Original Paper

Abstract

An understanding of the genetic determinism of frost tolerance is a prerequisite for the development of frost tolerant cultivars for cold northern areas. In legumes, it is not known to which extent vernalization requirement or photoperiod responsiveness are necessary for the development of frost tolerance. In pea (Pisum sativum L.) however, the flowering locus Hr is suspected to influence winter frost tolerance by delaying floral initiation until after the main winter freezing periods have passed. The objective of this study was to dissect the genetic determinism of frost tolerance in pea by QTL analysis and to assess the genetic linkage between winter frost tolerance and the Hr locus. A population of 164 recombinant inbred lines (RILs), derived from the cross Champagne x Terese was evaluated both in the greenhouse and in field conditions to characterize the photoperiod response from which the allele at the Hr locus was inferred. In addition, the population was also assessed for winter frost tolerance in 11 field conditions. Six QTL were detected, among which three were consistent among the different experimental conditions, confirming an oligogenic determinism of frost tolerance in pea. The Hr locus was found to be the peak marker for the highest explanatory QTL of this study. This result supports the hypothesis of the prominent part played by the photoperiod responsiveness in the determinism of frost tolerance for this species. The consistency of three QTL makes these positions interesting targets for marker-assisted selection.

Keywords

Freezing Tolerance Sowing Date Floral Initiation Frost Tolerance Photoperiod Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the UNIP (Union Nationale Interprofessionnelle des Plantes Riches en Protéines) and by Génoplante (projects GOP-PEAD1 and GOP-PEAD2).

The authors gratefully acknowledge the expert technical assistance and the inventiveness of Frederic Depta who designed and built the overshadowing installations in the greenhouse. They also acknowledge Bernard Debote and Florent Batifoy in Clermont-Ferrand, Pierre Mangin and Norbert Blanc in Dijon, Xavier Charrier in Lusignan, Christian Maginieau, Frédéric Hammel, Geneviève Riveill and Pascale Coste in Colmar, for their implication in the field experiments.

Supplementary material

122_2008_739_MOESM1_ESM.ppt (168 kb)
Figure S1. Morphology of Champagne and two contrasted Pop2 lines. These pictures were taken in March 2003 in Mons (sowing date: 2 October 2002). a: Forage line Champagne, carrying the dominant Hr allele. This line shows a rosette-type growth habit during the winter period: numerous branches with a prostrate growth. Despite this line is not dwarf, the internodes will remain short and the leaflets small until the floral initiation has occurred in mid-April. b: Line 186, carrying the dominant Hr allele, dwarf. c: Line 199, similar to the parent line Terese, carrying the recessive hr allele, has few branches and a more erected growth. (PPT 168 kb)

References

  1. Amasino R (2004a) Take a cold flower. Nat Genet 36:111–112PubMedCrossRefGoogle Scholar
  2. Amasino R (2004b) Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16:2553–2559PubMedCrossRefGoogle Scholar
  3. Andersen RL, Markarian D (1968) The inheritance of winterhardiness in Pisum III. Stem branching in Autumn growth. Euphytica 17:473–478CrossRefGoogle Scholar
  4. Aubert G, Morin J, Jacquin F, Loridon K, Quillet M, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041PubMedCrossRefGoogle Scholar
  5. Auld DL, Adams KJ, Swensen JB, Murray GA (1983) Diallel analyses of winterhardiness in peas. Crop Sci 23:763–766CrossRefGoogle Scholar
  6. Baranger A, Aubert G, Arnau G, Laine AL, Deniot G, Potier J, Weinachter C, Lejeune-Henaut I, Lallemand J, Burstin J (2004) Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor Appl Genet 108:1309–1321PubMedCrossRefGoogle Scholar
  7. Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936PubMedCrossRefGoogle Scholar
  8. Brouwer DJ, Duke SH, Osborn TC (2000) Mapping genetic factors associated with winter hardiness, fall growth, and freezing injury in autotetraploid alfalfa. Crop Sci 40:1387–1396CrossRefGoogle Scholar
  9. Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. PNAS 101:15289–15294PubMedCrossRefGoogle Scholar
  10. Cousin R, Messager A, Vingere A (1985) Breeding for yield in combining peas. In: Hebblethwaite PD, Heath MC, Dawkins TCK (eds) The pea crop. A basis for improvement. Butterworths, London, pp 115–136Google Scholar
  11. Domoney C, Welham T, Ellis N, Hellens R (1994) Inheritance of qualitative and quantitative trypsin-inhibitor variants in Pisum. Theor Appl Genet 89:387–391CrossRefGoogle Scholar
  12. Domoney C, Welham T, Sidebottom C, Firmin JL (1995) Multiple isoforms of Pisum trypsin inhibitors result from modification of two primary gene products. FEBS Lett 360:15–20PubMedCrossRefGoogle Scholar
  13. Ellis THN, Poyser SJ (2002) An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol 153:17–25CrossRefGoogle Scholar
  14. Fowler DB, Breton G, Limin AE, Mahfoozi S, Sarhan F (2001) Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Plant Physiol 127:1676–1681PubMedCrossRefGoogle Scholar
  15. Fowler DB, Chauvin LP, Limin AE, Sarhan F (1996) The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye. Theor Appl Genet 93:554–559CrossRefGoogle Scholar
  16. Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) x ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680PubMedCrossRefGoogle Scholar
  17. Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) Rflp Mapping of the Vernalization (Vrn1) and Frost-Resistance (Fr1) Genes on Chromosome 5a of Wheat. Theor Appl Genet 90:1174–1179CrossRefGoogle Scholar
  18. Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584PubMedCrossRefGoogle Scholar
  19. Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltran JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434PubMedCrossRefGoogle Scholar
  20. Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL, MacMillan J (1984) Internode length in Pisum. The Le gene controls the 3ß-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160:454–463CrossRefGoogle Scholar
  21. Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004) QTL mapping of winter hardiness genes in lentil. Crop Sci 44:13–22CrossRefGoogle Scholar
  22. Kaló P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis THN, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272:235–246PubMedCrossRefGoogle Scholar
  23. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  24. Lejeune-Hénaut I, Bourion V, Eteve G, Cunot E, Delhaye K, Desmyter C (1999) Floral initiation in field-grown forage peas is delayed to a greater extent by short photoperiods, than in other types of European varieties. Euphytica 109:201–211CrossRefGoogle Scholar
  25. Liesenfeld DR, Auld DL, Murray GA, Swensen JB (1986) Transmittance of winterhardiness in segregated populations of peas. Crop Sci 26:49–54CrossRefGoogle Scholar
  26. Lincoln M, Daly M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP version 3.0. Technical report, 3rd edn. Whitehouse Institute, Mass, CambridgeGoogle Scholar
  27. Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel M, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hénaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031PubMedCrossRefGoogle Scholar
  28. Mahfoozi S, Limin AE, Fowler DB (2001) Developmental regulation of low-temperature tolerance in winter wheat. Ann Bot 87:751–757CrossRefGoogle Scholar
  29. Markarian D, Andersen RL (1966) The inheritance of winterhardiness in Pisum I. Euphytica 15:102–110Google Scholar
  30. Mendel G (1866) Versuche über Pflanzenhybriden. Verhandlungen des Naturforschenden Vereines in Brünn 4:3–47Google Scholar
  31. Murfet IC (1971) Flowering in Pisum. Three distinct phenotypic classes determined by the interaction of a dominant early and a dominant late gene. Heredity 26:243–247CrossRefGoogle Scholar
  32. Murfet IC (1973) Flowering in Pisum. Hr, a gene for high response to photoperiod. Heredity 26:243–257CrossRefGoogle Scholar
  33. Murfet IC (1981) The likely flowering genotype for several cultivars and mutants. Pisum Newslett 13:40–41Google Scholar
  34. Murfet IC, Reid JB (1993) Developmental mutants. In: Casey R, Davies DR (eds) Peas: genetics, molecular biology and biotechnology. CAB International, Wallingford, pp 165–216Google Scholar
  35. Page D, Aubert G, Duc G, Welham T, Domoney C (2002) Combinatorial variation in coding and promoter sequences of genes at the Tri locus in Pisum sativum accounts for variation in trypsin inhibitor activity in seeds. Mol Genet Genomics 267:359–369PubMedCrossRefGoogle Scholar
  36. Page D, Duc G, Lejeune-Henaut I, Domoney C (2003) Marker-assisted selection of genetic variants for seed trypsin inhibitor contents in peas. Pisum Genetics 35:19–21Google Scholar
  37. Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedo Z (1994) Genetic-analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89:900–910CrossRefGoogle Scholar
  38. Roberts DWA (1990) Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome 33:247–259Google Scholar
  39. SAS (1999) SAS/STAT® User's Guide, version 8. SAS Institute Inc., Cary, NC, 3884 pGoogle Scholar
  40. Shapiro SS, Wilk MB (1965) An analysis of variance for normality (complete samples). Biometrika 52:591–611Google Scholar
  41. Teutonico RA, Osborn TC (1995) Mapping loci controlling vernalization requirement in Brassica rapa. Theor Appl Genet 91:1279–1283CrossRefGoogle Scholar
  42. Teutonico RA, Yandell B, Satagopan JM, Ferreira ME, Palta JP, Osborn TC (1995) Genetic analysis and mapping of genes controlling freezing tolerance in oilseed Brassica. Mol Breed 1:329–339CrossRefGoogle Scholar
  43. Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514PubMedCrossRefGoogle Scholar
  44. Wang S, Basten CJ, Zeng Z-B (2005) Windows QTL Cartographer Version 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://www.statgen.ncsu.edu/qtlcart/WQTLCart.htm)
  45. Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genetics 30:1–4Google Scholar
  46. Weller JL, Reid JB, Taylor SA, Murfet IC (1997) The genetic control of flowering in pea. Trends Plant Sci 2:412–418CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • I. Lejeune-Hénaut
    • 1
    Email author
  • E. Hanocq
    • 1
  • L. Béthencourt
    • 1
  • V. Fontaine
    • 1
  • B. Delbreil
    • 1
  • J. Morin
    • 1
    • 5
  • A. Petit
    • 1
    • 6
  • R. Devaux
    • 1
  • M. Boilleau
    • 1
  • J.-J. Stempniak
    • 1
  • M. Thomas
    • 1
  • A.-L. Lainé
    • 1
    • 7
  • F. Foucher
    • 4
    • 8
  • A. Baranger
    • 2
  • J. Burstin
    • 3
  • C. Rameau
    • 4
  • C. Giauffret
    • 1
  1. 1.UMR INRA/USTL SADVPéronne CedexFrance
  2. 2.UMR INRA/ENSAR APBVLe RheuFrance
  3. 3.URLEG INRA, Domaine d’EpoissesBretenièresFrance
  4. 4.SGAP INRAVersaillesFrance
  5. 5.UMR INRA/ENSAR APBV, Domaine de la Motte BP 35327Le RheuFrance
  6. 6.CIREF, Création Variétale Fraises Fruits RougesDouvilleFrance
  7. 7.UMR INRA/CNRS/Haras Nationaux/Université de Tours Physiologie de la Reproduction et des ComportementsNouzillyFrance
  8. 8.UMR INRA/INH/Université d’Angers GenHort, 42, rue Georges MorelBeaucouzé CedexFrance

Personalised recommendations